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Abstract: We discuss how explainability in AI-systems can deliver transparency and build trust 
towards greater adoption of automation to support financial regulation compliance among 
banks and financial services firms. We uniquely propose the concept of Explainable Intelligent 
Automation as the next generation of Intelligent Automation. Explainable Intelligent 
Automation seeks to leverage emerging innovations in the area of Explainable Artificial 
Intelligence. AI systems underlying Intelligent Automation bring considerable advantages to 
the task of automating compliance processes. A barrier to AI adoption though is the black-box 
nature of the machine learning techniques delivering the outcomes, which is exacerbated by 
the pursuit of increasingly complex frameworks, such as deep learning, in the delivery of 
performance accuracy. Through articulating the business value of Robotic Process Automation 
and Intelligent Automation, we consider the potential for Explainable Intelligent Automation 
to add value. The solution framework sets out the Explainable Intelligent Automation 
framework, as the interface of Robotic Process Automation, Business Process Management 
and Explainable Artificial Intelligence. We discuss key considerations of an organisation in 
terms of setting strategic priorities around the explainability of AI systems, the technical 
considerations in Explainable Artificial Intelligence analytics, and the imperative to evaluate 
explanations.  
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1. Problem Statement  
A priority theme in the digital transformation 
of business is that of automation. The 2022 
Deloitte Insights Automation with Intelligence 
survey1 notes a number of industry trends in 
respect of Robotic Process Automation and, in 
the next phase, Intelligent Automation. The 
research of Deloitte notes:  

• Continued progression of firms along the 
automation maturity curve;  

• The need to move away from task-based 
automation towards end-to-end automation;  

• The benefits of insight-driven transformation 
gained from process intelligence approaches;  

• The use of Automation-as-a-Service as a 
delivery mode of automation solutions;   

• The emergence of citizen-led development as 
a human-computer framework that enables 
users to create new task-based automations 
for their own use, which helps to break the 
misconception of automation replacing 
humans.   

Automation is noted by the Deloitte analysis as 
offering significant commercial benefits in the 
form of increased productivity, cost reduction, 
improved accuracy, and better customer 
experience. In the automation space, we are 
observing a gradual move from Robotic 
Process Automation (RPA) to Intelligent 
Automation (IA). RPA is well-established as 
involving the deployment of technology to 
automate routine tasks that typically are done 
by employees of organisations. Towards 
smarter end-to-end automation and 
intelligence-based approaches to automation, 
as called for by the above Deloitte analysis, IA 
seeks to leverage advanced, sophisticated 
artificial intelligence capability. IA is defined by 
IBM1 as bringing together the domains of 
Robotic Process Automation, Business Process 
Management, and Artificial Intelligence (Figure 
1). The augmentation of RPA with AI capability 
offers significant advantages in allowing for 
complex business processes and procedures 

 
1 https://www.ibm.com/cloud/learn/intelligent-automation.  

that leverage large volumes of data to support 
decision making.   

  

  

Figure 1: Intelligent Automation Framework  

There are, however, various barriers to 
adoption of AI. The 2022 Deloitte Insights 
Automation with Intelligence survey identifies 
barriers to innovation adoption. Specifically, 
the study emphasises the barriers to 
automation adoption as being:  

• Process fragmentation  

• Lack of a clear vision  

• Lack of IT readiness  

• Resistance to change.  

In respect of IA, the latter barrier often 
manifests as distrust within the organisation 
around the adoption of AI systems. Trust is a 
key behavioural barrier to the adoption of 
innovation. AI systems create trust issues for 
users due to the black-box nature of the 
underlying AI algorithms. We seek to tackle this 
problem and demonstrate how trust can be 
engendered through providing explainability to 
the outcomes of AI systems underlying IA. We 
argue that emerging Explainable AI techniques 
can deliver greater transparency into AI-based 
automation. Indeed, we propose a new 
concept, Explainable Intelligent Automation, as 
a next phase of IA.  

https://www.ibm.com/cloud/learn/intelligent-automation
https://www.ibm.com/cloud/learn/intelligent-automation
https://www.ibm.com/cloud/learn/intelligent-automation
https://www.ibm.com/cloud/learn/intelligent-automation
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For banking and financial institutions, 
automation is currently playing a role in 
supporting financial regulation compliance 
processes. In the context of regulatory 
reporting, Deloitte in 20172articulated where 
automation may provide the greatest value to 
an organisation:  

• Optimisation of data extraction that would 
otherwise be performed manually  

• Standardisation of data aggregation  

• Enhancing regulatory report capabilities  

• Streamlining and enhancing data quality and 
data lineage documentation  

• Development of regulatory report review and 
analysis capabilities  

Against this backdrop of regulatory reporting 
use cases, Explainable Intelligent Automation 
has the potential to deliver transparency and 
explainability around the use of AI systems to 
support the above automation benefits.  

  

2.Literature Review  
2.1 The business utility of Robotic Process 
Automation and Intelligent Automation  

Bot utilization is rapidly increasing in business 
in general. Though several entities have begun 
embracing RPA, there is an insufficiency of 
knowledge in choosing suited processes for 
automation. Technological advances, coupled 
with cost cutting business automation, have 
led to a considerable rise in RPA use. The global 
RPA software market is assessed at a $1.89 
billion value as of 2021, an increase of 118% 
since 2018. Furthermore, large companies are 
forecasted to triple the capacity of their 
existing RPA portfolios by 2024 (Eulerich et al., 
2022).    

In an audit context, RPA has been shown to 
increase task efficiency and effectiveness 
(developed bots saved time net of their 
creation time and eliminated human errors). 
However, to prevent failure to meet 

 
2 https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatoryautomating-

regulatory-reporting-banking-securities.pdf   

expectations from emerging audit RPA, more 
guidance was needed, and simply reusing 
general or other industry RPA guidance was 
unlikely to be optimal (Eulerich et al., 2022). 
Cooper et al. (2019) similarly report on 
opportunities, and challenges to implementing 
RPA in accounting. They find sizable efficiency 
and effectiveness gains from RPA 
implementation, with highest adoption in tax 
services, followed by advisory and assurance 
services. However, they also highlight concerns 
around future fee reductions sought by clients 
owing to decreased employee hours. Other 
fields such as travel, tourism, supply chain 
management, etc. are also expected to be 
significantly impacted in their way of operation 
by intelligent automation and responsible AI 
(Behl et al., 2023; Rydzik and Kissoon, 2022; 
Tussyadiah, 2020). Moreover, the 
contemporary growth of AI capability and 
scope is likely to continue to expand with 
language translation, truck driving, retail work, 
surgery, office, administrative and service work 
envisioned to be automated significantly 
(Coombs et al., 2020). Such breakthroughs in 
the so-called ``fourth industrial revolution'' are 
envisaged to impact value creation and 
distribution, forever altering work, interactions 
and living through automation. Such 
automation is thus a key ingredient of the 
digital transformation occurring in many 
sectors. Rather than direct human labour 
substitution by machines, such automation is 
machine integration into self-governing 
systems (Tussyadiah, 2020).   

From a management information systems 
perspective, Lacity and Wilcocks (2021) 
present exhaustive evidence on intelligence 
automation, RPA, and Cognitive Automation 
(CA), highlighting both their successes and 
failures in achieving business value. To arrive at 
their conclusions, they review hundreds of 
intelligent automation implementations across 
geographies, industries, and processes across 
six years. They also note larger digital 
transformation programs are more and more 
integrated with intelligent automation 

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
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programs, with several entities aiming to 
automate processes across firm boundaries.  

More specifically, Lacity and Wilcocks (2021) 
note a paradigm shift from 2014 onwards, 
based on which they identify a continuum of 
automation as seen in Figure 2. From an 
RPA/CA historical perspective, they note the 
first use of the term RPA in 2012 by Phil Fersht, 
founder of an outsourcing consulting firm 
Horses for Sources (HfS), in a report ̀ `Greetings 
from Robotistan, Outsourcing’s Cheapest New 
Destination''. It highlighted Blue Prism, a UK 
start-up incorporated in 2001. Blue Prism came 
into the limelight when Patrick Geary, its chief 
marketing officer, began terming its product 
``RPA'' in 2012. This term resonated with 
practitioners and other automation companies 
rebranded their tools with the same label. By 
2016, over two dozen companies indicated 
they provided RPA tools, with a claimed market 
size of $600 million. Owing to this rapid 
growth, a need for RPA standards arose, and 
Lee Coulter, then CEO of Ascension Shared 
Services, began an IEEE initiative for the same, 
and in December 2016 became chairman of 
the IEEE Working Group on Standards in 
Intelligent Process Automation. The group 
published the first standard in 2017, 
demarcating enterprise RPA (developed for 
organizations) and robotic desktop automation 
(RDA) (intended for single desktop use).  

 Figure 2: Automation Continuum Source:  

Lacity and Wilcocks (2021) 

As of 2020, Lacity and Wilcocks (2021) noted 
the RPA market's value was estimated between 
$2-4 billion, based on various consulting 
reports. They observed a consensus among 
most sources' forecasts on its yearly growth 
rate from 30% to 50% in the foreseeable future. 

C-suite priorities for such emerging 
technologies were seen to change considerably 
due to the pandemic, which elicited a sharp 
emphasis on fast Return on Investment (ROI) 
generating technologies such as process 
automation. Many claims and foresee mass 
unemployment, job eliminations from such 
automation developments first through 
predictable, repetitive work, and eventually 
from AI outperformance relative to humans in 
many activities (Coombs et al., 2020).  

However, Lacity and Wilcocks (2021) deduce 
that many falsely assume automation ROI 
arises from firing employees. The primary 
value addition from service automation is 
undoubtedly freeing up human labour, this is 
more accurately viewed as ``hours back to the 
business’’ (hours taken if humans still 
performed automated tasks representing 
human capacity freed for different work). Most 
cases they investigate use freed-up labour 
capacity for people redeployment to other 
tasks within the work unit. Such entities were 
able to take on more work without hiring 
proportionally more workers. It is evidently 
more valuable to grow efficiently by 
redeploying existing employees rather than 
searching for, vetting, onboarding, and training 
new ones. To illustrate, if 800,000 is the hours 
back to the business for a company, dividing it 
by 2,000 (the average annual number of 
employee work hours) gives us a value of 400 
``Full Time Equivalents (FTEs)’’. This does not 
mean 400 employees are no longer needed, 
but more likely that 20% of 2,000 people’s jobs 
have been automated, most often repetitive 
work. 
 
The usual outcome is such partial task 
automation, rather than pure job losses, which 
is often offset by the extra work taken on by 
businesses, assessed to be between 8 to 12% 
annually. Such work comes from exponentially 
rising data volumes and regulatory needs, 
among other causes. Further, skill shortages, 
backlogs are also offset through automation, 
with most companies seeking employee 
retraining, complex-task assignment, or early 
retirements rather than layoffs. Moreover, 
while automation undoubtedly results in job 
losses, evidence indicates these are 
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compensated for by skill development and net 
positive new job creations and changes. Finally, 
HR involvement is thought to be essential 
when embracing automation as productivity 
may seem to drop on account of more complex 
tasks being assigned to humans, which take 
longer to execute (Lacity and Wilcocks, 2021).  
Lastly, the business value and utility of BPM has 
also been studied extensively, and numerous 
demonstrable instances of this can be 
highlighted. Owing to the similarity of BPM 
with the other automation and AI concepts 
discussed and given that it is a relatively older 
concept, it is not expanded upon extensively 
here. Interested readers are directed to 
Mendling et al. (2020) for a comprehensive 
overview.  

2.2 Motivation for Explainable Intelligent 
Automation  

2.2.1 Robotic Process Automation Context  

RPA is both a standalone and combinable 
technology. For example, both local and cloud-
based RPA usage is possible. However, there is 
limited insight into how interactions occur 
when RPA is combined with other 
technologies. RPA may thus be useful to 
investigate how multiple technologies interact 
to influence organizations, people, tasks, and 
structures (Eulerich et al., 2022), perhaps 
through Explainable Intelligent Automation. 
Similarly, RPA's implementation flexibility 
ranging from low-/no-code to high-code 
solutions can balance usage ease versus user 
task precision (Eulerich et al., 2022), and it may 
be possible to study this trade-off with 
Explainable Intelligent Automation. Studying 
the effects of both types of RPA this way might 
help assess the importance of flexibility, usage 
ease and other system acceptance and use 
principles (Eulerich et al., 2022). Finally, a 
current RPA limitation is only being able to 
perform rules-based tasks; however, as AI 
progresses, RPA may be able to perform more 
complex tasks requiring judgment (Eulerich et 
al., 2022), possibly with combined AI and RPA 
usage that can be understood with an 
explainability layer.  

2.2.2 Cognitive Automation Context  

Likewise, companies are challenged in finding 
alternate use for specifically designed CA tools. 
Largely due to data challenges, early adopters 
experience expensive and painful 
implementations. Firm case studies reveal CA 
tool adoptions employ supervised machine 
learning algorithms. These require thousands 
of labelled training examples for acceptable 
proficiency levels. Given 80% of corporate data 
is “dark,” i.e., untagged, untapped, or 
unlocatable, tool adopters first must create 
new data, and clean up dirty (inconsistent, 
incorrect, outdated, duplicated, or missing) 
data. ``Difficult data'' - hard for a machine to 
read but valid and accurate (e.g., sophisticated 
natural language text, unexpected data types 
and fuzzy images) - is another significant 
challenge. Laborious human intervention was 
required in these circumstances to sort out 
these data problems (Lacity and Wilcocks, 
2021). With judicious deployment of 
Explainable Intelligent Automation, it may be 
possible to ameliorate these difficulties.  

2.2.3 Intelligent Automation Context  

CA tools usage in conjunction with RPA 
software is gaining traction - serving as an 
execution engine, especially in banking, 
insurance, and financial services organizations. 
For example, a bank, may deploy an interactive 
front-end chat bot for customer dialogues, but 
draw upon RPA for ensuring conversational 
accuracy, say if the topic is a stolen credit card. 
Even better CA and RPA integration is augured, 
giving rise to an increase in cloud-based 
automation exchange platforms (Lacity and 
Wilcocks, 2021). With such platforms, it may be 
useful to monitor and understand the decision 
making involved in such intelligent automation 
through the lens of explainable artificial 
intelligence, clearly indicating what variables 
drive the decision making of the CA tools and 
how they subsequently engage the relevant 
RPA tool.    

Smart organizations now look to assimilate 
(intelligent) automation into grander digital 
transformations, and RPA and CA are 
fundamental to these. However, this is 
increasingly difficult in such applications, and a 
long-term, complex, large-scale process in any 
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sizeable long-standing organization. Scaling 
automation is another crucial challenge. By 
2019's end, just 13% of companies had RPA 
deployments which were industrialized and 
scaled, and only 12% had an enterprise 
automation approach without much change by 
late 2020. While top software providers have 
several customers, very few customers deploy 
over 100 software robots. This may be partly as 
the next stage's cost looks steep, as suggested 
earlier in this paragraph, though evidence 
suggests exponential benefits. Problems arise 
in integrating RPA with existing/new IT and are 
exacerbated when considered across the 
enterprise. Preexisting process fragmentation 
is vicissitudinous. RPA deployment concerns 
are worsened where executives do not see 
strategic value, are too far removed from the 
programs, or underinvest. CA deployment 
faces issues of an even greater magnitude. 
Progress has been slow and challenging to date 
(Lacity and Wilcocks, 2021).  Once more, 
Explainable Intelligent Automation may pave 
the way to resolving these systemic issues, 
possibly reducing complexity through 
explainability, and providing explanations on 
how this might be achieved. Thereby, it may be 
possible to enable access to the sizable 
advantages promised by scaled, integrated 
enterprise-wide intelligent automation.  

2.2.4   Business Process Management 
Context  

Contemporary research suggests digital 
innovation may benefit from business 
process management (BPM), perhaps the 
most prominent management practice to 
improve operational efficiency. Digital 
innovation is catalysing useful change in 
work for the modern world, and BPM can 
speed this process up even further, with 
several instances of the impact of both 
shown to revolutionize several walks of life 
(Mendling et al., 2020). Unfortunately, 
research on digital innovation and BPM has 
been conducted separately under 
orthogonal assumptions thus far (Mendling 
et al., 2020). Once again, the synthesis of 
both these concepts might perhaps be 
facilitated with the aid of Explainable 
Intelligent Automation.  

3 Solution Framework  
3.1 Explainable Intelligent Automation 
Framework  

As articulated in the problem statement, trust 
is a key behavioural barrier to the adoption of 
automation-based innovation. AI systems are 
known to create trust issues for users, 
particularly in commercial settings, due to the 
black box nature of the underlying AI 
algorithms. However, trust may be engendered 
through providing explainability to the 
outcomes of AI systems. Cutting-edge 
Explainable AI techniques offer the potential to 
deliver transparency and build trust in IA.   

Explainability is vital to ensuring that 
automation systems are doing what they are 
expected to, and that outcomes can be 
explained via a transparent and trustworthy 
evidence base throughout an organisation’s 
management structure. Trustworthiness in 
automation systems inspires confidence in 
individuals and organisations that they can 
benefit from, and rely on, the efficiencies that 
automation delivers.    

 This is the basis of the Explainable Intelligent 
Automation (EIA) concept that we propose. We 
define Explainable Intelligent Automation as 
the convergence of Robotic Process 
Automation, Business Process Management, 
and Explainable Artificial Intelligence (Figure 
3).  

 Figure 3: Explainable Intelligent 
Automation Framework  
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Depending on the maturity of a firm’s digital 
transformation programme, we envisage a 
staged process in the automation adoption 
journey. Firms are required to phase their 
transition, at an appropriate pace, from 
Robotic Process Automation to Intelligent 
Automation to Explainable Intelligent 
Automation (Figure 4).  

Figure 4: Staged Automation Adoption 

In the forthcoming sections, we explore the 
concept of Explainable AI as the key innovation 
that underlies Explainable Intelligent 
Automation design. We outline (i) the strategic 
imperative that needs to be placed on 
explainability in the deployment of Explainable 
Intelligent Automation, (ii) approaches to 
explanation generation and (iii) approaches to 
explanation evaluation. 

3.2  Corporate Strategy  

In considering XAI integration into AI system 
deployment within a financial services firm, it 
is necessary to consider the importance of 
explainability strategically and to connect this 
explicitly with the firm’s overall digital strategy. 
Grennan et al. (2022), in a McKinsey article 
outline the business case for explainable AI. In 
particular, the following benefits are identified:  

• Increased productivity through better 
monitoring, maintenance, and enhancement 
of AI systems;   

• Building trust and adoption rates among key 
stakeholders through the transparency that 
explanations provide;  

• Identifying new value creation opportunities 
from the insights that explanations provide;  

• Articulating the business value of AI systems 
through explanations that connect 
investment to outcomes more closely.  

• Better risk mitigation and regulatory 
compliance outcomes afforded by AI system 
explanations.  

Placing strategic importance on the 
explainability of AI systems has the potential to 
impact various key users across an 
organisation. Figure 5 from Grennan et al. 
(2022) summarises this impact for several 
professional roles – technologists, business 
professionals and legal and risk professionals. 
It can be seen that XAI can benefit users 
through delivering efficiencies, building trust, 
facilitating human-in-the-loop interventions, 
aligning with business objectives and 
complying with regulations. This latter point is 
extremely important in the context of, on the 
one hand, using AI towards simplifying 
compliance, and, on the other hand, complying 
with regulation pertaining to AI systems usage 
within financial services organisations.     

Source: Grennan et al. (2022) [McKinsey] 
Figure 5: Impact of Explainability on AI System 
Users  

3.3 Approaches to Explanation 
Generation  

 With strategy and governance structures in 
place, the organisation needs to then focus on 
engineering explainability into AI systems 
through the choice of specific XAI approaches. 
This choice may depend on the nature of the 
problem space and the materiality attached to 
this.  We provide an overview of the main 
considerations in respect of XAI techniques. 
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What is an explanation, and what are its 
properties? (Molnar, 2020)  

An explanation usually relates feature values 
of an instance to its model prediction in a 
humanly understandable way.  

To explain an ML model’s predictions, some 
explanation method is relied on, such as an 
algorithm that generates explanations. Other 
explanation types consist of a set of data 
instances (e.g., for the k-nearest neighbour 
model). For example, a support vector machine 
can be used to predict cancer risk, and explain 
predictions with the local surrogate method, 
that generates decision trees as explanations. 
Alternately, a linear regression model may be 
used that is already equipped with an 
explanation method (interpreting weights). 
Certain properties have been identified for 
explanation methods, and explanations. These 
may be used to assess how good they are. It is 
unclear how these properties may be 
measured correctly, so formalizing how they 
could be calculated is a vicissitude.  (Molnar, 
2020).  

  Properties of Explanation Methods (Molnar, 
2020):  

• Expressive Power - “Language” or structure 
of explanations the method generates. An 
explanation method may generate natural 
language, a weighted sum, decision trees, 
IFTHEN rules, or something else (Molnar, 
2020).  

• Translucency - Describes the extent of 
reliance on the explanation method to look 
into the ML model, like its parameters. E.g., 
Intrinsically interpretable models like the 
linear regression model (model-specific) with 
explanations reliant on them are highly 
translucent. Conversely, methods solely 
dependent on manipulating inputs and 
observing predictions have zero translucency. 
Different scenario-dependent translucency 
levels may be desirable. High translucency 
methods can rely on more information to 
generate explanations. Meanwhile, low 
translucency explanation methods are more 
portable (Molnar, 2020).  

• Portability - Describes how many ML models 
with which the explanation method may be 
used. Low translucency methods have higher 
portability: they treat ML models as black 
boxes. Surrogate models may be the 
explanation method with highest portability. 
Model specific methods (only work for that 
model e.g., recurrent neural networks) have 
low portability (Molnar, 2020).  

• Algorithmic Complexity - Describes 
computational complexity of the explanation 
generating method. Important when 
computation time bottlenecks generating 
explanations (Molnar, 2020).  

Properties of Individual Explanations 
(Molnar, 2020):  

• Accuracy: How well is unseen data predicted? 
High accuracy is particularly valuable if the 
explanation is used for predictions in place of 
the ML model. Low accuracy may be 
acceptable if the ML model’s accuracy is also 
low, and if the goal is to explain what the 
black box model does. In this case, only 
fidelity is important (Molnar, 2020).  

• Fidelity: How well is the black-box model’s 
prediction approximated? High fidelity is one 
of the most important explanation 
properties, as low fidelity explanations have 
no value in explaining ML models. Accuracy 
and fidelity are closely related. If the black 
box model has high accuracy its explanation 
also usually has high fidelity and accuracy. 
Some explanations only offer local fidelity, 
i.e., explanation only approximates well to 
model prediction for a data subset (e.g., local 
surrogate models) or individual data instance 
(e.g., local Shapley Values) (Molnar, 2020).  

• Consistency: Differences between models 
trained on the same task and producing 
similar predictions? E.g., assume a support 
vector machine and a linear regression model 
are trained on the same task and both 
produce very similar predictions. Using a 
method of choice, if the explanations are very 
similar, they are highly consistent. This is 
somewhat subtle, as two models may use 
different features, with similar predictions 
(also called “Rashomon Effect”). A high 
consistency is undesirable here as the 
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explanations must be very different. High 
consistency is desirable if models really rely 
on similar relationships (Molnar, 2020).  

• Stability: Similarity across similar instances. 
Stability juxtaposes explanations between 
similar instances for a model, whereas 
consistency contrasts explanations between 
models. High stability means slight variations 
in an instance’s features do not substantially 
change the explanation (unless these slight 
variations also strongly change the 
prediction). Instability may be due to high 
variance of the explanation method. Put 
differently, strong effects on explanations are 
seen from slight changes to feature values of 
the instance to be explained. Non-
deterministic components of the explanation 
method may also drive instability, like a data 
sampling step, which the local surrogate 
method uses. High stability is always 
desirable (Molnar, 2020).  

• Comprehensibility: How well do humans 
understand? While seemingly like the other 
properties, this one is particularly important. 
It is difficult to measure and define, but very 
crucial to get right. Comprehensibility is 
broadly agreed to depend on the audience. 
Measurement ideas include measuring the 
explanation size (number of features with 
non-zero weights in a linear model, number 
of decision rules, etc.) or testing how well 
people predict ML model behaviour from 
explanations. Comprehensibility of features 
used in explanations also should be 
considered. Complex feature transformations 
may be less comprehensible than the 
originals (Molnar, 2020).  

• Certainty: Is the certainty of the ML model 
reflected? Many ML models only predict 
without stating the confidence of correct 
predictions. If a 4% cancer probability is 
predicted for a patient, is it as certain as the 
4% probability another patient, with different 
feature values, received? Explanation 
incorporating model certainty is very useful 
(Molnar, 2020).  

• Degree of Importance: How well is 
importance of features or parts of the 
explanation reflected? If a decision rule 
explanation for instance is generated for an 

individual prediction, is it clear which rule 
conditions were the most important (Molnar, 
2020)?  

• Novelty: Is it evident if a data instance to be 
explained is sampled from a “new” region, far 
removed from the training data’s 
distribution? If not, the model may be 
inaccurate and explanation useless. Novelty 
is conceptually related to certainty. Higher 
novelty, Implied higher likelihood of low 
model certainty due to lack of data (Molnar, 
2020).  

• Representativeness: How many instances are 
covered? Explanations may cover an entire 
model (e.g., linear regression model weights 
interpretation) or represent individual 
predictions (e.g., local Shapley Values) 
(Molnar, 2020).  

What are good or human-friendly 
explanations? (Molnar, 2020)  

There can be far-reaching consequences for 
interpretable machine learning based on 
“good” explanations, as defined by humans. 
Concise and single (or at most double) cause 
explanations which juxtapose the treatment 
group with a counterfactual group are 
preferred by humans. Good explanations are 
provided particularly by abnormal causes. 
Explanations are also “social interactions 
between the explainer and explanation 
recipient”, where a human being or a machine 
is the explainer. This implies the actual content 
of the explanation is significantly impacted by 
the social context. Alternately, they may refer 
to “the social and cognitive process of 
explaining, but also to the product of these 
processes”. Furthermore, a careful distinction 
needs to be made when comparing 
explanations that are “human-friendly”, and 
complete causal attribution, where all factors 
for a particular prediction or behaviour need 
explaining. The latter may be preferred in legal 
contexts, where one is mandated to debug an 
ML model or indicate all influencing sources 
(Molnar, 2020).  

Conversely, where non-experts or time-starved 
individuals are the explanation’s target 
audience, an alternative definition applies, 
which defines an explanation as “the answer to 
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a why-question”, which can be answered with 
an “everyday”-explanation. Instances of such 
questions may include why a loan was rejected, 
or why a treatment lacked efficacy for a 
patient. Such “why” questions can usually be 
reformulated as questions beginning with 
“how” as well (Molnar, 2020).  

A deeper dive into what constitutes a “good” 
explanation yields certain criteria which have 
definite implications for interpretable ML. 
These can be listed as follows - for more detail 
on these and their implications with examples, 
interested readers are referred to (Molnar, 
2020):  

• Contrastive – Answers why this prediction 
was made instead of another prediction.  The 
implication is a requirement for application-
dependent explanations because a point of 
reference for comparison is needed. This may 
depend on the data point to be explained, 
but also on the user receiving the 
explanation. The solution for automated 
creation of contrastive explanations might 
also involve finding proto/archetypes in the 
data (Molnar, 2020).  

• Selected - Select one or two causes from 
various possible causes as “THE” explanation, 
rather than covering an actual complete list 
of event causes (Molnar, 2020).   

This implies a preference for brevity in 
explanation with 1-3 reasons, even if reality is 
more complex (Molnar, 2020).  

• Social - Part of a conversation or interaction 
between the explainer and explanation 
receiver.  

The implication is that attention to the social 
environment and intended recipients for 
explanations is needed. Getting this right may 
depend entirely on the specific application 
(Molnar, 2020).  

• Focus on the abnormal - People focus more 
on abnormal causes in any sense (like a rare 
category of a categorical feature) to explain 
events, that had a small probability but 
nevertheless happened, without which the 
outcome would have greatly changed 
(counterfactual explanation) (Molnar, 2020).  

If an input feature for a prediction is abnormal, 
and it influenced the latter, it should be 
included in an explanation, even if other 
‘normal’ features have the same influence 
(Molnar, 2020).  

• Truthful - Prove to be true in reality (i.e., in 
other situations), but selectiveness seems 
more important, which is troubling (Molnar, 
2020).  

This implies events should be predicted as 
truthfully as possible (also called fidelity), with 
less relative importance given to it than 
contrast, social aspect, and selectivity (Molnar, 
2020).  

• Consistent with explainee’s prior beliefs - 
Humans tend to devalue or ignore 
information inconsistent or in disagreement 
with prior beliefs, also called confirmation 
bias. Thus, this bias logically also extends to 
explanations (Molnar, 2020).  

This implies using specific ways to deal with 
inconsistent explanations, although difficult to 
integrate into ML, and may come at a heavy 
cost to predictive performance (Molnar, 2020).  

• General and probable - A cause that can 
explain many events is very general and could 
be considered a good explanation. Although 
this contradicts the claim that abnormal 
causes make good explanations, as a rule of 
thumb, abnormal causes trump general 
causes, and in the absence of the former, the 
latter comes to the fore (Molnar, 2020).  

Implies measurement of generality should 
happen, which is easily achieved by the 
feature’s support: the number of instances to 
which the explanation applies, divided by the 
total number of instances (Molnar, 2020).  

Methods for machine learning interpretability 
can be classified according to various criteria 
(Molnar, 2020):  

Intrinsic or post hoc: Criterion distinguishes 
based on how interpretability is achieved by 
restricting the model complexity (intrinsic) or 
analysing the model by applying methods after 
training (post hoc). Intrinsic interpretability 
describes models deemed interpretable owing 
to their simplicity, e.g., sparse linear models or 
short decision trees. Post hoc interpretability 
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implies interpretability methods applied after 
model training, e.g., permutation feature 
importance. Post hoc methods may also be 
applied to intrinsically interpretability models, 
like computing permutation feature 
importance for decision trees (Molnar, 2020).  

 Model-specific or model-agnostic: 
Interpretability tools confined to specific 
model classes are considered model-specific. 
Linear regression model weights are 
interpreted this way, as their intrinsic 
interpretation is always model-specific. 
Similarly, tailored tools for interpreting 
machine learning models such as neural 
networks are also considered model-specific. 
In contrast, model-agnostic interpretability 
tools may be deployed on any model and are 
used post hoc, after model training. Generally, 
such agnostic methods function through 
feature input and output pairs’ analysis. These 
methods cannot access model internals like 
weights or structural information (Molnar, 
2020).  

Scope of interpretability: Each algorithmic 
step in training a predictive model can be 
evaluated in terms of transparency and 
interpretability (Molnar, 2020):  

• Algorithm Transparency: Assesses how an 
algorithm creates the model. This relates to 
how an algorithm learns a model from data 
and the relation types it is capable of 
learning. Using convolutional neural 
networks to classify images, one may explain 
the learning of edge detectors and filters on 
the lowest layers by the algorithm. This is 
comprehension of how the algorithm works, 
but not the specific model that learned in the 
end, and the individual prediction process. 
Such transparency only requires algorithmic 
knowledge rather than knowing data or the 
learned model. Algorithms like the least 
squares method are well studied and 
understood. They characterize high 
transparency. Deep learning approaches 
(pushing a gradient through a network with 
millions of weights) are in contrast less well 
understood. Research is ongoing on their 
inner workings and are thus opaquer 
(Molnar, 2020).  

• Global, Holistic Model Interpretability: This 
distinction focuses on how the trained model 
makes predictions. A model may be called 
interpretable if it can be comprehended 
entirely at once. To explain the global model 
output, knowing the trained model, 
algorithm and data are prerequisites. This 
interpretability level considers how the 
model decisions are made, from a holistic 
features’ view, and each learned component 
e.g., weights, other parameters, and 
structures. Global interpretability answers 
the question: which features are important, 
and what kind of interactions between them 
take place? In other words, it helps 
comprehend the target outcome distribution 
based on features and is exceedingly difficult 
to achieve pragmatically. Any model beyond 
a limited number of parameters or weights 
cannot fit into an average human’s short-
term memory. One cannot imagine a five-
feature linear model as it implies drawing the 
estimated hyperplane in a five-dimensional 
space. Any space over three dimensions 
cannot be conceived by humans. Thus, model 
comprehension by humans is generally 
limited to parts, such as linear model weights 
(Molnar, 2020).  

• Global Model Interpretability on a Modular 
Level: At a modular level global explanations 
determine how model parts impact 
predictions. A Naive Bayes model with several 
hundreds of features is far too large for a 
human’s working memory. Even with 
memorization, quick predictions for new data 
points would be impractical. The joint 
distribution of all features is needed over and 
above this to estimate each feature’s 
importance and how they affect predictions 
on average, making it impossible. But a single 
weight is easily understood. Thus, 
understanding some models at a modular 
level is probable. Not all models can be 
interpreted at a parameter level. For linear 
models, the interpretable parts are weights, 
for trees they are splits (selected features + 
cut-off points) and leaf node predictions. 
Linear models may seem perfectly 
interpretable on a modular level, but a single 
weight’s interpretation is inextricably linked 
with all other weights. This is why such an 
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interpretation is prefaced by saying other 
input features remain the same, which is not 
realistic in most cases. A linear model 
predicting a house’s value, accounts for both 
its size and number of rooms, and may 
negative weight the room feature. This is as it 
is highly correlated with the house size 
feature. Where people prefer larger rooms, 
fewer rooms in a house may be valued over a 
house with more rooms, if both are of the 
same size. Weights only make sense after 
contextualizing other model features. But 
linear model weights may still be interpreted 
better than deep neural network weights 
(Molnar, 2020).  

• Local Interpretability for a Single Prediction: 
Investigates why the model made a certain 
prediction for a certain instance. This entails 
homing in on a single instance and examining 
what the model predicts for it and explaining 
why. For individual predictions, an otherwise 
complex model might behave more 
accessibly. Locally, predictions may only be 
linearly or monotonically dependent on 
some features, rather than complexly so. Say 
a house’s value depends nonlinearly on its 
size. But when examining one particular 100 
square meter house, it is possible for that 
subset, prediction depends linearly on size. 
This can be deduced by simulating how 
predicted price changes upon increasing or 
decreasing size by 10 square meters.  

Local explanations may therefore be more 
accurate than global ones. (Molnar, 2020).  

• Local Interpretability for a Group of 
Predictions - Answers why a model made 
specific predictions for a group of instances. 
Multiple instance predictions may be 
explained either with global (modular level) 
interpretation methods or with individual 
instances. Global methods can be applied by 
taking the group, treating them as the 
complete dataset, and using global methods 
with the subset. Individual explanation 
methods can be used on each instance, then 
listed or aggregated for the entire group 
(Molnar, 2020).  

  

Interpretation method: Various 
interpretation methods can be broadly 
distinguished based on their results. These 
can be summarised as follows (Molnar, 
2020):  

• Feature summary statistics - Several methods 
give summary statistics for every feature, 
with some providing a single number per 
feature (like feature importance), or more 
complex output, (e.g., pairwise feature 
interaction strengths) (Molnar, 2020).  

• Feature summary visualization - Most feature 
summary statistics may also be visualized. 
Certain summaries only become meaningful 
if visualized, and a table would be the wrong 
choice. A feature’s partial dependence is such 
a case, where plots are curves depicting a 
feature and the average predicted outcome. 
Partial dependences are ideally presented 
with the drawn curve rather than printed 
coordinates (Molnar, 2020).  

• Model internals (e.g., learned weights) - 
Intrinsically interpretable models fall into this 
category; for instance, linear models’ weights 
or learned decision trees’ structure (features, 
and thresholds for splits). There is no clear 
distinction between feature summary 
statistic and model internals in cases like 
linear models, as weights represent them 
simultaneously. Another method eliciting 
model internals is the feature detectors 
visualization in convolutional neural 
networks. Such methods are, by definition 
model-specific (Molnar, 2020).  

• Data point - This category comprises all 
methods with data points (already existent or 
newly created) as outputs to facilitate 
interpretability. One such method is 
counterfactual explanations. To explain a 
data instance forecast, the method changes 
some features where the predicted outcome 
changes accordingly (like a class prediction 
change), to find a similar data point. Another 
instance is identifying predicted class 
prototypes. For utility, interpretation 
methods returning new data points need 
data points that themselves are 
interpretable. This has limited relevance for 
tabular data with hundreds of features but 
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works well for images and texts (Molnar, 
2020).  

• Intrinsically interpretable model - One black 
box model interpretation solution is (global 
or local) approximations with interpretable 
models. The model itself is interpreted 
through internal feature summary statistics 
or model parameters (Molnar, 2020).  

3.3.1 Explainable AI Techniques  

While a technical review of XAI techniques is 
beyond the scope of this white paper, 
Nagahisarchoghaei et al. (2023) in their survey 
paper provide a useful visualisation of existing 
XAI techniques across three broad categories: 
(i) self-explainability; (ii) global post hoc 
explainability and (iii) local post hoc 
explainability.   

3.4 Approaches to Evaluating Explanations   

In advance of EU laws regulating AI and some 
associated standards, a careful evaluation of 
XAI is essential to outline specific desirable 
properties. Given that the overarching goal of 
XAI is to establish trust among humans, it is 
crucial to prioritize properties such as human-
friendliness, privacy, and non-discrimination 
(Robnik et al., 2018; Miller, 2019). Ali et al. 
(2023) document five aspects of XAI 
evaluations.  

 First, explanation evaluation can be built up on 
cognitive psychology theories to articulate a 
general formal system of how humans can 
interpret. By examining the cognitive state of 
human users, investigations can improve 
efficiency of explanations and enhance user 
understanding of AI systems. To determine 
what kinds of XAI are preferred, measures of 
understandability of users on AI agents and 
algorithms are imperative (Dodge et al., 2018; 
Penney et al., 2018; Rader and Gray, 2015). It is 
also essential to consider users' attention and 
expectation in the process of incorporating 
explainability into AI systems (Stumpf et al., 
2018).  

Satisfaction is the second aspect of XAI 
evaluations. A diverse array of metrics, 
encompassing both subjective and objective 
measures, has been adopted to assess the 
clarity and adequacy of explanations (Miller, 

2019). Curran et al. (2012) utilize a method 
involving ranking and coding of user transcripts 
to evaluate the effectiveness of explanations 
within a computer vision challenge. Lage et al. 
(2019) illustrate the importance of complexity 
of XAI model (length, intricacy) in affecting 
satisfaction. Confalonieri et al. (2021) gauge 
users' perceived understanding of explanations 
through task performance metrics, including 
accuracy and response time, as well as 
subjective measures like confidence level of 
user’s responses.  

The next aspect of XAI evaluation is trust and 
transparency. Cahour and Forzy (2009) adopt 
three trust scales in trust assessment of users. 
Nothdurft et al. (2014) examine the 
relationship between user trust and AI decision 
explanations, particularly focusing on 
transparency. Bussone et al. (2015) utilize a 
Likert scale and think-aloud protocols to 
appraise user trust in a clinical decision-
support system, revealing that factual 
explanations contribute to an enhancement in 
user trust. Recently, Stepin et al. (2022) 
employed Likert scales to measure human 
perceptions of the trustworthiness of 
automated counterfactual explanations.  

Assessment of human-AI interface is one 
aspect to evaluate XAI. Myers et al. (2006) 
introduce a framework allowing users to pose 
"why" and "why not" questions for coherent 
responses Lim et al. (2009) assess human 
performance using AI systems with varied 
explanations, considering task completion 
time and success rates. Evaluating the human-
AI interface helps verify model outputs and 
debug specific AI models (Kulesza et al., 2015). 
Visual analytics tools like TopicPanaroma, 
FairSight, DGMTracker, aid domain experts in 
evaluating and reducing biases for fair data-
driven decision-making.  

The last aspect that Ali et al. (2023) propose for 
XAI evaluation is computational assessment. 
Not only human assessment, but system 
transparency may also be prioritized. In 
response, Herman (2017) advocates for 
computational approaches to evaluate 
explanation fidelity, focusing on the accuracy 
of saliency maps as indicators. Various 
computational methods have emerged to 
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assess the validity, consistency, and fidelity of 
explainability techniques compared to the 
original blackbox model. Zeiler and Fergus 
(2014) demonstrate improved prediction 
outcomes through evaluating a CNN 
visualization tool's fidelity in detecting model 
flaws. Ross et al. (2017) evaluate the 
consistency and computing cost of 
explanations using LIME as a baseline, while 
Schmidt and Biessmann (2019) introduce an 
explanation quality score based on human 
intuition.   

 

4 Conclusion  
In this white paper, we discuss how 
explainability in AI-systems can deliver 
transparency and build trust towards greater 
adoption of automation to support financial 
regulation compliance among banks and 
financial services firms. We uniquely propose 
the concept of Explainable Intelligent 
Automation as the next generation of 
Intelligent Automation. Explainable Intelligent 
Automation seeks to leverage emerging 
innovations in the area of Explainable Artificial 
Intelligence. AI systems underlying Intelligent 
Automation bring considerable advantages to 
the task of automating compliance processes. 
A barrier to AI adoption though is the black-box 
nature of the machine learning techniques 
delivering the outcomes, which is exacerbated 
by the pursuit of increasingly complex 
frameworks, such as deep learning, in the 
delivery of performance accuracy. Through 
articulating the business value of Robotic 
Process Automation and Intelligent 
Automation, we consider the potential for 
Explainable Intelligent Automation to add 
value. The solution framework sets out the 
Explainable Intelligent Automation framework, 
as the interface of Robotic Process 
Automation, Business Process Management 
and Explainable Artificial Intelligence. We also 
discuss key considerations of an organisation in 
terms of setting strategic priorities around the 
explainability of AI systems, the technical 
considerations in Explainable Artificial 
Intelligence analytics, and the imperative to 
evaluate explanations. 
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