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Abstract: We discuss how explainability in AI-systems can deliver transparency and build trust 
towards greater adoption of automation to support financial regulation compliance among 
banks and financial services firms. We uniquely propose the concept of Explainable Intelligent 
Automation as the next generation of Intelligent Automation. Explainable Intelligent Automation 
seeks to leverage emerging innovations in the area of Explainable Artificial Intelligence. AI 
systems underlying Intelligent Automation bring considerable advantages to the task of 
automating compliance processes. A barrier to AI adoption though is the black-box nature of the 
machine learning techniques delivering the outcomes, which is exacerbated by the pursuit of 
increasingly complex frameworks, such as deep learning, in the delivery of performance 
accuracy. Through articulating the business value of Robotic Process Automation and Intelligent 
Automation, we consider the potential for Explainable Intelligent Automation to add value. The 
solution framework sets out the Explainable Intelligent Automation framework, as the interface 
of Robotic Process Automation, Business Process Management and Explainable Artificial 
Intelligence. We discuss key considerations of an organisation in terms of setting strategic 
priorities around the explainability of AI systems, the technical considerations in Explainable 
Artificial Intelligence analytics, and the imperative to evaluate explanations. 

   

 

Strategic Alignment: FinTech Research & Innovation Roadmap 2021-31; Kalifa Review of UK 

FinTech; EU’s Corporate Sustainability Reporting Directive, subject to European Sustainability 

Reporting Standards; EU’s Sustainable Finance Disclosure Regulation; UK’s Task Force on Climate-

Related Financial Disclosures (FCA); UK’s Climate-Related Financial Disclosure (Department for 

Energy Security and Net-Zero); UK Sustainability Disclosure Standards. 
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1. Problem Statement 

 

A priority theme in the digital transformation of business is that of automation. The 2022 Deloitte 

Insights Automation with Intelligence survey1 notes a number of industry trends in respect of 

Robotic Process Automation and, in the next phase, Intelligent Automation. The research of 

Deloitte notes: 

• Continued progression of firms along the automation maturity curve; 

• The need to move away from task-based automation towards end-to-end automation; 

• The benefits of insight-driven transformation gained from process intelligence 

approaches; 

• The use of Automation-as-a-Service as a delivery mode of automation solutions;  

• The emergence of citizen-led development as a human-computer framework that 

enables users to create new task-based automations for their own use, which helps to 

break the misconception of automation replacing humans.  

Automation is noted by the Deloitte analysis as offering significant commercial benefits in the 

form of increased productivity, cost reduction, improved accuracy, and better customer 

experience. In the automation space, we are observing a gradual move from Robotic Process 

Automation (RPA) to Intelligent Automation (IA). RPA is well-established as involving the 

deployment of technology to automate routine tasks that typically are done by employees of 

organisations. Towards smarter end-to-end automation and intelligence-based approaches to 

automation, as called for by the above Deloitte analysis, IA seeks to leverage advanced, 

sophisticated artificial intelligence capability. IA is defined by IBM1 as bringing together the 

domains of Robotic Process Automation, Business Process Management, and Artificial 

Intelligence (Figure 1). The augmentation of RPA with AI capability offers significant advantages 

in allowing for complex business processes and procedures that leverage large volumes of data 

to support decision making.  

 

 
1 https://www.ibm.com/cloud/learn/intelligent-automation. 

https://www.ibm.com/cloud/learn/intelligent-automation


 
 
 

2 
 

 

Figure 1: Intelligent Automation Framework 

 

There are, however, various barriers to adoption of AI. The 2022 Deloitte Insights Automation 

with Intelligence survey identifies barriers to innovation adoption. Specifically, the study 

emphasises the barriers to automation adoption as being: 

• Process fragmentation 

• Lack of a clear vision 

• Lack of IT readiness 

• Resistance to change. 

 

In respect of IA, the latter barrier often manifests as distrust within the organisation around the 

adoption of AI systems. Trust is a key behavioural barrier to the adoption of innovation. AI 

systems create trust issues for users due to the black-box nature of the underlying AI algorithms. 

We seek to tackle this problem and demonstrate how trust can be engendered through providing 

explainability to the outcomes of AI systems underlying IA. We argue that emerging Explainable 

AI techniques can deliver greater transparency into AI-based automation. Indeed, we propose a 

new concept, Explainable Intelligent Automation, as a next phase of IA. 
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For banking and financial institutions, automation is currently playing a role in supporting 

financial regulation compliance processes. In the context of regulatory reporting, Deloitte in 

20172articulated where automation may provide the greatest value to an organisation: 

•  Optimisation of data extraction that would otherwise be performed manually 

• Standardisation of data aggregation 

• Enhancing regulatory report capabilities 

• Streamlining and enhancing data quality and data lineage documentation 

• Development of regulatory report review and analysis capabilities 

 

Against this backdrop of regulatory reporting use cases, Explainable Intelligent Automation has 

the potential to deliver transparency and explainability around the use of AI systems to support 

the above automation benefits. 

 

2. Literature Review 

 

2.1. The business utility of Robotic Process Automation and Intelligent Automation 

 

Bot utilization is rapidly increasing in business in general. Though several entities have begun 

embracing RPA, there is an insufficiency of knowledge in choosing suited processes for 

automation. Technological advances, coupled with cost cutting business automation, have led 

to a considerable rise in RPA use. The global RPA software market is assessed at a $1.89 billion 

value as of 2021, an increase of 118% since 2018. Furthermore, large companies are forecasted 

to triple the capacity of their existing RPA portfolios by 2024 (Eulerich et al., 2022).   

  

In an audit context, RPA has been shown to increase task efficiency and effectiveness (developed 

bots saved time net of their creation time and eliminated human errors). However, to prevent 

failure to meet expectations from emerging audit RPA, more guidance was needed, and simply 

reusing general or other industry RPA guidance was unlikely to be optimal (Eulerich et al., 2022). 

Cooper et al. (2019) similarly report on opportunities, and challenges to implementing RPA in 

 
2 https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-
automating-regulatory-reporting-banking-securities.pdf  

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/regulatory/us-regulatory-automating-regulatory-reporting-banking-securities.pdf
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accounting. They find sizable efficiency and effectiveness gains from RPA implementation, with 

highest adoption in tax services, followed by advisory and assurance services. However, they 

also highlight concerns around future fee reductions sought by clients owing to decreased 

employee hours. Other fields such as travel, tourism, supply chain management, etc. are also 

expected to be significantly impacted in their way of operation by intelligent automation and 

responsible AI (Behl et al., 2023; Rydzik and Kissoon, 2022; Tussyadiah, 2020). Moreover, the 

contemporary growth of AI capability and scope is likely to continue to expand with language 

translation, truck driving, retail work, surgery, office, administrative and service work envisioned 

to be automated significantly (Coombs et al., 2020). Such breakthroughs in the so-called ̀ `fourth 

industrial revolution'' are envisaged to impact value creation and distribution, forever altering 

work, interactions and living through automation. Such automation is thus a key ingredient of 

the digital transformation occurring in many sectors. Rather than direct human labour 

substitution by machines, such automation is machine integration into self-governing systems 

(Tussyadiah, 2020).  

  

From a management information systems perspective, Lacity and Wilcocks (2021) present 

exhaustive evidence on intelligence automation, RPA, and Cognitive Automation (CA), 

highlighting both their successes and failures in achieving business value. To arrive at their 

conclusions, they review hundreds of intelligent automation implementations across 

geographies, industries, and processes across six years. They also note larger digital 

transformation programs are more and more integrated with intelligent automation programs, 

with several entities aiming to automate processes across firm boundaries. 

  

More specifically, Lacity and Wilcocks (2021) note a paradigm shift from 2014 onwards, based 

on which they identify a continuum of automation as seen in Figure 2. From an RPA/CA historical 

perspective, they note the first use of the term RPA in 2012 by Phil Fersht, founder of an 

outsourcing consulting firm Horses for Sources (HfS), in a report ``Greetings from Robotistan, 

Outsourcing’s Cheapest New Destination''. It highlighted Blue Prism, a UK start-up incorporated 

in 2001. Blue Prism came into the limelight when Patrick Geary, its chief marketing officer, began 

terming its product ̀ `RPA'' in 2012. This term resonated with practitioners and other automation 

companies rebranded their tools with the same label. By 2016, over two dozen companies 

indicated they provided RPA tools, with a claimed market size of $600 million. Owing to this 
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rapid growth, a need for RPA standards arose, and Lee Coulter, then CEO of Ascension Shared 

Services, began an IEEE initiative for the same, and in December 2016 became chairman of the 

IEEE Working Group on Standards in Intelligent Process Automation. The group published the 

first standard in 2017, demarcating enterprise RPA (developed for organizations) and robotic 

desktop automation (RDA) (intended for single desktop use). 

  

 

 

Source: Lacity and Wilcocks (2021) 

Figure 2: Automation Continuum 

 

As of 2020, Lacity and Wilcocks (2021) noted the RPA market's value was estimated between 

$2-4 billion, based on various consulting reports. They observed a consensus among most 

sources' forecasts on its yearly growth rate from 30% to 50% in the foreseeable future. C-suite 

priorities for such emerging technologies were seen to change considerably due to the 

pandemic, which elicited a sharp emphasis on fast Return on Investment (ROI) generating 

technologies such as process automation. Many claims and foresee mass unemployment, job 

eliminations from such automation developments first through predictable, repetitive work, and 

eventually from AI outperformance relative to humans in many activities (Coombs et al., 2020). 

  

However, Lacity and Wilcocks (2021) deduce that many falsely assume automation ROI arises 

from firing employees. The primary value addition from service automation is undoubtedly 

freeing up human labour, this is more accurately viewed as ``hours back to the business’’ (hours 

taken if humans still performed automated tasks representing human capacity freed for 

different work). Most cases they investigate use freed-up labour capacity for people 
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redeployment to other tasks within the work unit. Such entities were able to take on more work 

without hiring proportionally more workers. It is evidently more valuable to grow efficiently by 

redeploying existing employees rather than searching for, vetting, onboarding, and training new 

ones. To illustrate, if 800,000 is the hours back to the business for a company, dividing it by 2,000 

(the average annual number of employee work hours) gives us a value of 400 ``Full Time 

Equivalents (FTEs)’’. This does not mean 400 employees are no longer needed, but more likely 

that 20% of 2,000 people’s jobs have been automated, most often repetitive work. 

  

The usual outcome is such partial task automation, rat’’r than pure job losses, which is often 

offset by the extra work taken on by businesses, assessed to be between 8 to 12% annually. Such 

work comes from exponentially rising data volumes and regulatory needs, among other causes. 

Further, skill shortages, backlogs are also offset through automation, with most companies 

seeking employee retraining, complex-task assignment, or early retirements rather than layoffs. 

Moreover, while automation undoubtedly results in job losses, evidence indicates these are 

compensated for by skill development and net positive new job creations and changes. Finally, 

HR involvement is thought to be essential when embracing automation as productivity may 

seem to drop on account of more complex tasks being assigned to humans, which take longer 

to execute (Lacity and Wilcocks, 2021). 

  

Lastly, the business value and utility of BPM has also been studied extensively, and numerous 

demonstrable instances of this can be highlighted. Owing to the similarity of BPM with the other 

automation and AI concepts discussed and given that it is a relatively older concept, it is not 

expanded upon extensively here. Interested readers are directed to Mendling et al. (2020) for a 

comprehensive overview. 

 

2.2 Motivation for Explainable Intelligent Automation 

  

2.2.1 Robotic Process Automation Context 

  

RPA is both a standalone and combinable technology. For example, both local and cloud-based 

RPA usage is possible. However, there is limited insight into how interactions occur when RPA is 

combined with other technologies. RPA may thus be useful to investigate how multiple 
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technologies interact to influence organizations, people, tasks, and structures (Eulerich et al., 

2022), perhaps through Explainable Intelligent Automation. Similarly, RPA's implementation 

flexibility ranging from low-/no-code to high-code solutions can balance usage ease versus user 

task precision (Eulerich et al., 2022), and it may be possible to study this trade-off with 

Explainable Intelligent Automation. Studying the effects of both types of RPA this way might 

help assess the importance of flexibility, usage ease and other system acceptance and use 

principles (Eulerich et al., 2022). Finally, a current RPA limitation is only being able to perform 

rules-based tasks; however, as AI progresses, RPA may be able to perform more complex tasks 

requiring judgment (Eulerich et al., 2022), possibly with combined AI and RPA usage that can be 

understood with an explainability layer. 

  

2.2.2 Cognitive Automation Context 

  

Likewise, companies are challenged in finding alternate use for specifically designed CA tools. 

Largely due to data challenges, early adopters experience expensive and painful 

implementations. Firm case studies reveal CA tool adoptions employ supervised machine 

learning algorithms. These require thousands of labelled training examples for acceptable 

proficiency levels. Given 80% of corporate data is “dark,” i.e., untagged, untapped, or 

unlocatable, tool adopters first must create new data, and clean up dirty (inconsistent, incorrect, 

outdated, duplicated, or missing) data. ``Difficult data'' - hard for a machine to read but valid 

and accurate (e.g., sophisticated natural language text, unexpected data types and fuzzy images) 

- is another significant challenge. Laborious human intervention was required in these 

circumstances to sort out these data problems (Lacity and Wilcocks, 2021). With judicious 

deployment of Explainable Intelligent Automation, it may be possible to ameliorate these 

difficulties. 

  

2.2.3 Intelligent Automation Context 

  

CA tools usage in conjunction with RPA software is gaining traction - serving as an execution 

engine, especially in banking, insurance, and financial services organizations. For example, a 

bank, may deploy an interactive front-end chat bot for customer dialogues, but draw upon RPA 

for ensuring conversational accuracy, say if the topic is a stolen credit card. Even better CA and 
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RPA integration is augured, giving rise to an increase in cloud-based automation exchange 

platforms (Lacity and Wilcocks, 2021). With such platforms, it may be useful to monitor and 

understand the decision making involved in such intelligent automation through the lens of 

explainable artificial intelligence, clearly indicating what variables drive the decision making of 

the CA tools and how they subsequently engage the relevant RPA tool.   

  

Smart organizations now look to assimilate (intelligent) automation into grander digital 

transformations, and RPA and CA are fundamental to these. However, this is increasingly difficult 

in such applications, and a long-term, complex, large-scale process in any sizeable long-standing 

organization. Scaling automation is another crucial challenge. By 2019's end, just 13% of 

companies had RPA deployments which were industrialized and scaled, and only 12% had an 

enterprise automation approach without much change by late 2020. While top software 

providers have several customers, very few customers deploy over 100 software robots. This 

may be partly as the next stage's cost looks steep, as suggested earlier in this paragraph, though 

evidence suggests exponential benefits. Problems arise in integrating RPA with existing/new IT 

and are exacerbated when considered across the enterprise. Preexisting process fragmentation 

is vicissitudinous. RPA deployment concerns are worsened where executives do not see strategic 

value, are too far removed from the programs, or underinvest. CA deployment faces issues of 

an even greater magnitude. Progress has been slow and challenging to date (Lacity and Wilcocks, 

2021).  Once more, Explainable Intelligent Automation may pave the way to resolving these 

systemic issues, possibly reducing complexity through explainability, and providing explanations 

on how this might be achieved. Thereby, it may be possible to enable access to the sizable 

advantages promised by scaled, integrated enterprise-wide intelligent automation. 

  

2.2.4 Business Process Management Context 

  

Contemporary research suggests digital innovation may benefit from business process 

management (BPM), perhaps the most prominent management practice to improve operational 

efficiency. Digital innovation is catalysing useful change in work for the modern world, and BPM 

can speed this process up even further, with several instances of the impact of both shown to 

revolutionize several walks of life (Mendling et al., 2020). Unfortunately, research on digital 

innovation and BPM has been conducted separately under orthogonal assumptions thus far 
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(Mendling et al., 2020). Once again, the synthesis of both these concepts might perhaps be 

facilitated with the aid of Explainable Intelligent Automation. 

 

3. Solution Framework 

 

3.1 Explainable Intelligent Automation Framework 

 

As articulated in the problem statement, trust is a key behavioural barrier to the adoption of 

automation-based innovation. AI systems are known to create trust issues for users, particularly 

in commercial settings, due to the black box nature of the underlying AI algorithms. However, 

trust may be engendered through providing explainability to the outcomes of AI systems. 

Cutting-edge Explainable AI techniques offer the potential to deliver transparency and build trust 

in IA.  

Explainability is vital to ensuring that automation systems are doing what they are expected to, 

and that outcomes can be explained via a transparent and trustworthy evidence base throughout 

an organisation’s management structure. Trustworthiness in automation systems inspires 

confidence in individuals and organisations that they can benefit from, and rely on, the 

efficiencies that automation delivers.   

 

This is the basis of the Explainable Intelligent Automation (EIA) concept that we propose. We 

define Explainable Intelligent Automation as the convergence of Robotic Process Automation, 

Business Process Management, and Explainable Artificial Intelligence (Figure 3). 
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Figure 3: Explainable Intelligent Automation Framework 

 

Depending on the maturity of a firm’s digital transformation programme, we envisage a staged 

process in the automation adoption journey. Firms are required to phase their transition, at an 

appropriate pace, from Robotic Process Automation to Intelligent Automation to Explainable 

Intelligent Automation (Figure 4). 

 

Figure 4: Staged Automation Adoption 

 

In the forthcoming sections, we explore the concept of Explainable AI as the key innovation that 

underlies Explainable Intelligent Automation design. We outline (i) the strategic imperative that 

needs to be placed on explainability in the deployment of Explainable Intelligent Automation, (ii) 

approaches to explanation generation and (iii) approaches to explanation evaluation.   
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3.2 Corporate Strategy 

In considering XAI integration into AI system deployment within a financial services firm, it is 

necessary to consider the importance of explainability strategically and to connect this explicitly 

with the firm’s overall digital strategy. Grennan et al. (2022), in a McKinsey article outline the 

business case for explainable AI. In particular, the following benefits are identified: 

• Increased productivity through better monitoring, maintenance, and enhancement of AI 

systems;  

• Building trust and adoption rates among key stakeholders through the transparency that 

explanations provide; 

• Identifying new value creation opportunities from the insights that explanations provide; 

• Articulating the business value of AI systems through explanations that connect 

investment to outcomes more closely. 

• Better risk mitigation and regulatory compliance outcomes afforded by AI system 

explanations. 

 

Placing strategic importance on the explainability of AI systems has the potential to impact 

various key users across an organisation. Figure 5 from Grennan et al. (2022) summarises this 

impact for several professional roles – technologists, business professionals and legal and risk 

professionals. It can be seen that XAI can benefit users through delivering efficiencies, building 

trust, facilitating human-in-the-loop interventions, aligning with business objectives and 

complying with regulations. This latter point is extremely important in the context of, on the one 

hand, using AI towards simplifying compliance, and, on the other hand, complying with 

regulation pertaining to AI systems usage within financial services organisations.  
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Source: Grennan et al. (2022) [McKinsey] 

Figure 5: Impact of Explainability on AI System Users 

 

3.3 Approaches to Explanation Generation 

 

With strategy and governance structures in place, the organisation needs to then focus on 

engineering explainability into AI systems through the choice of specific XAI approaches. This 

choice may depend on the nature of the problem space and the materiality attached to this.  We 

provide an overview of the main considerations in respect of XAI techniques.  

 

What is an explanation, and what are its properties? (Molnar, 2020) 

  

An explanation usually relates feature values of an instance to its model prediction in a 

humanly understandable way. To explain an ML model’s predictions, some explanation method 

is relied on, such as an algorithm that generates explanations. Other explanation types consist of 

a set of data instances (e.g., for the k-nearest neighbour model). For example, a support vector 

machine can be used to predict cancer risk, and explain predictions with the local surrogate 

method, that generates decision trees as explanations. Alternately, a linear regression model 

may be used that is already equipped with an explanation method (interpreting weights). Certain 

properties have been identified for explanation methods, and explanations. These may be used 

to assess how good they are. It is unclear how these properties may be measured correctly, so 

formalizing how they could be calculated is a vicissitude.  (Molnar, 2020). 
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Properties of Explanation Methods (Molnar, 2020): 

• Expressive Power - “Language” or structure of explanations the method generates. An 

explanation method may generate natural language, a weighted sum, decision trees, IF-

THEN rules, or something else (Molnar, 2020). 

• Translucency - Describes the extent of reliance on the explanation method to look into 

the ML model, like its parameters. E.g., Intrinsically interpretable models like the linear 

regression model (model-specific) with explanations reliant on them are highly 

translucent. Conversely, methods solely dependent on manipulating inputs and 

observing predictions have zero translucency. Different scenario-dependent 

translucency levels may be desirable. High translucency methods can rely on more 

information to generate explanations. Meanwhile, low translucency explanation 

methods are more portable (Molnar, 2020). 

• Portability - Describes how many ML models with which the explanation method may 

be used. Low translucency methods have higher portability: they treat ML models as 

black boxes. Surrogate models may be the explanation method with highest portability. 

Model specific methods (only work for that model e.g., recurrent neural networks) have 

low portability (Molnar, 2020). 

• Algorithmic Complexity - Describes computational complexity of the explanation 

generating method. Important when computation time bottlenecks generating 

explanations (Molnar, 2020). 

  

Properties of Individual Explanations (Molnar, 2020):  

• Accuracy: How well is unseen data predicted? High accuracy is particularly valuable if 

the explanation is used for predictions in place of the ML model. Low accuracy may be 

acceptable if the ML model’s accuracy is also low, and if the goal is to explain what the 

black box model does. In this case, only fidelity is important (Molnar, 2020). 

• Fidelity: How well is the black-box model’s prediction approximated? High fidelity is one 

of the most important explanation properties, as low fidelity explanations have no value 

in explaining ML models. Accuracy and fidelity are closely related. If the black box model 

has high accuracy its explanation also usually has high fidelity and accuracy. Some 

explanations only offer local fidelity, i.e., explanation only approximates well to model 
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prediction for a data subset (e.g., local surrogate models) or individual data instance 

(e.g., local Shapley Values) (Molnar, 2020). 

• Consistency: Differences between models trained on the same task and producing 

similar predictions? E.g., assume a support vector machine and a linear regression model 

are trained on the same task and both produce very similar predictions. Using a method 

of choice, if the explanations are very similar, they are highly consistent. This is 

somewhat subtle, as two models may use different features, with similar predictions 

(also called “Rashomon Effect”). A high consistency is undesirable here as the 

explanations must be very different. High consistency is desirable if models really rely on 

similar relationships (Molnar, 2020). 

• Stability: Similarity across similar instances. Stability juxtaposes explanations between 

similar instances for a model, whereas consistency contrasts explanations between 

models. High stability means slight variations in an instance’s features do not 

substantially change the explanation (unless these slight variations also strongly change 

the prediction). Instability may be due to high variance of the explanation method. Put 

differently, strong effects on explanations are seen from slight changes to feature values 

of the instance to be explained. Non-deterministic components of the explanation 

method may also drive instability, like a data sampling step, which the local surrogate 

method uses. High stability is always desirable (Molnar, 2020). 

• Comprehensibility: How well do humans understand? While seemingly like the other 

properties, this one is particularly important. It is difficult to measure and define, but 

very crucial to get right. Comprehensibility is broadly agreed to depend on the audience. 

Measurement ideas include measuring the explanation size (number of features with 

non-zero weights in a linear model, number of decision rules, etc.) or testing how well 

people predict ML model behaviour from explanations. Comprehensibility of features 

used in explanations also should be considered. Complex feature transformations may 

be less comprehensible than the originals (Molnar, 2020). 

• Certainty: Is the certainty of the ML model reflected? Many ML models only predict 

without stating the confidence of correct predictions. If a 4% cancer probability is 

predicted for a patient, is it as certain as the 4% probability another patient, with 

different feature values, received? Explanation incorporating model certainty is very 

useful (Molnar, 2020). 
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• Degree of Importance: How well is importance of features or parts of the explanation 

reflected? If a decision rule explanation for instance is generated for an individual 

prediction, is it clear which rule conditions were the most important (Molnar, 2020)? 

• Novelty: Is it evident if a data instance to be explained is sampled from a “new” region, 

far removed from the training data’s distribution? If not, the model may be inaccurate 

and explanation useless. Novelty is conceptually related to certainty. Higher novelty, 

Implied higher likelihood of low model certainty due to lack of data (Molnar, 2020). 

• Representativeness: How many instances are covered? Explanations may cover an entire 

model (e.g., linear regression model weights interpretation) or represent individual 

predictions (e.g., local Shapley Values) (Molnar, 2020). 

  

What are good or human-friendly explanations? (Molnar, 2020) 

  

There can be far-reaching consequences for interpretable machine learning based on “good” 

explanations, as defined by humans. Concise and single (or at most double) cause explanations 

which juxtapose the treatment group with a counterfactual group are preferred by humans. 

Good explanations are provided particularly by abnormal causes. Explanations are also “social 

interactions between the explainer and explanation recipient”, where a human being or a 

machine is the explainer. This implies the actual content of the explanation is significantly 

impacted by the social context. Alternately, they may refer to “the social and cognitive process 

of explaining, but also to the product of these processes”. Furthermore, a careful distinction 

needs to be made when comparing explanations that are “human-friendly”, and complete causal 

attribution, where all factors for a particular prediction or behaviour need explaining. The latter 

may be preferred in legal contexts, where one is mandated to debug an ML model or indicate all 

influencing sources (Molnar, 2020). 

  

Conversely, where non-experts or time-starved individuals are the explanation’s target audience, 

an alternative definition applies, which defines an explanation as “the answer to a why-question”, 

which can be answered with an “everyday”-explanation. Instances of such questions may include 

why a loan was rejected, or why a treatment lacked efficacy for a patient. Such “why” questions 

can usually be reformulated as questions beginning with “how” as well (Molnar, 2020). 
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A deeper dive into what constitutes a “good” explanation yields certain criteria which have 

definite implications for interpretable ML. These can be listed as follows - for more detail on 

these and their implications with examples, interested readers are referred to (Molnar, 2020): 

• Contrastive – Answers why this prediction was made instead of another prediction.  

The implication is a requirement for application-dependent explanations because a 

point of reference for comparison is needed. This may depend on the data point to be 

explained, but also on the user receiving the explanation. The solution for automated 

creation of contrastive explanations might also involve finding proto/archetypes in the 

data (Molnar, 2020). 

• Selected - Select one or two causes from various possible causes as “THE” explanation, 

rather than covering an actual complete list of event causes (Molnar, 2020).  

This implies a preference for brevity in explanation with 1-3 reasons, even if reality is 

more complex (Molnar, 2020). 

• Social - Part of a conversation or interaction between the explainer and explanation 

receiver. 

The implication is that attention to the social environment and intended recipients for 

explanations is needed. Getting this right may depend entirely on the specific application 

(Molnar, 2020). 

• Focus on the abnormal - People focus more on abnormal causes in any sense (like a rare 

category of a categorical feature) to explain events, that had a small probability but 

nevertheless happened, without which the outcome would have greatly changed 

(counterfactual explanation) (Molnar, 2020). 

If an input feature for a prediction is abnormal, and it influenced the latter, it should be 

included in an explanation, even if other ‘normal’ features have the same influence 

(Molnar, 2020). 

• Truthful - Prove to be true in reality (i.e., in other situations), but selectiveness seems 

more important, which is troubling (Molnar, 2020). 

This implies events should be predicted as truthfully as possible (also called fidelity), 

with less relative importance given to it than contrast, social aspect, and selectivity 

(Molnar, 2020). 
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• Consistent with explainee’s prior beliefs - Humans tend to devalue or ignore information 

inconsistent or in disagreement with prior beliefs, also called confirmation bias. Thus, 

this bias logically also extends to explanations (Molnar, 2020). 

This implies using specific ways to deal with inconsistent explanations, although difficult 

to integrate into ML, and may come at a heavy cost to predictive performance (Molnar, 

2020). 

• General and probable - A cause that can explain many events is very general and could 

be considered a good explanation. Although this contradicts the claim that abnormal 

causes make good explanations, as a rule of thumb, abnormal causes trump general 

causes, and in the absence of the former, the latter comes to the fore (Molnar, 2020). 

Implies measurement of generality should happen, which is easily achieved by the 

feature’s support: the number of instances to which the explanation applies, divided by 

the total number of instances (Molnar, 2020). 

 

 

Methods for machine learning interpretability can be classified according to various criteria 

(Molnar, 2020): 

  

Intrinsic or post hoc: Criterion distinguishes based on how interpretability is achieved 

by restricting the model complexity (intrinsic) or analysing the model by applying 

methods after training (post hoc). Intrinsic interpretability describes models deemed 

interpretable owing to their simplicity, e.g., sparse linear models or short decision trees. 

Post hoc interpretability implies interpretability methods applied after model training, 

e.g., permutation feature importance. Post hoc methods may also be applied to 

intrinsically interpretability models, like computing permutation feature importance for 

decision trees (Molnar, 2020). 

  

Model-specific or model-agnostic: Interpretability tools confined to specific model 

classes are considered model-specific. Linear regression model weights are interpreted 

this way, as their intrinsic interpretation is always model-specific. Similarly, tailored tools 

for interpreting 
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machine learning models such as neural networks are also considered model-specific. In 

contrast, model-agnostic interpretability tools may be deployed on any model and are 

used post hoc, after model training. Generally, such agnostic methods function through 

feature input and output pairs’ analysis. These methods cannot access model internals 

like weights or structural information (Molnar, 2020). 

 

Scope of interpretability: Each algorithmic step in training a predictive model can be 

evaluated in terms of transparency and interpretability (Molnar, 2020): 

 

• Algorithm Transparency: Assesses how an algorithm creates the model. This relates 

to how an algorithm learns a model from data and the relation types it is capable of 

learning. Using convolutional neural networks to classify images, one may explain 

the learning of edge detectors and filters on the lowest layers by the algorithm. This 

is comprehension of how the algorithm works, but not the specific model that 

learned in the end, and the individual prediction process. Such transparency only 

requires algorithmic knowledge rather than knowing data or the learned model. 

Algorithms like the least squares method are well studied and understood. They 

characterize high transparency. Deep learning approaches (pushing a gradient 

through a network with millions of weights) are in contrast less well understood. 

Research is ongoing on their inner workings and are thus opaquer (Molnar, 2020). 

• Global, Holistic Model Interpretability: This distinction focuses on how the trained 

model makes predictions. A model may be called interpretable if it can be 

comprehended entirely at once. To explain the global model output, knowing the 

trained model, algorithm and data are prerequisites. This interpretability level 

considers how the model decisions are made, from a holistic features’ view, and each 

learned component e.g., weights, other parameters, and structures. Global 

interpretability answers the question: which features are important, and what kind 

of interactions between them take place? In other words, it helps comprehend the 

target outcome distribution based on features and is exceedingly difficult to achieve 

pragmatically. Any model beyond a limited number of parameters or weights cannot 

fit into an average human’s short-term memory. One cannot imagine a five-feature 

linear model as it implies drawing the estimated hyperplane in a five-dimensional 
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space. Any space over three dimensions cannot be conceived by humans. Thus, 

model comprehension by humans is generally limited to parts, such as linear model 

weights (Molnar, 2020). 

• Global Model Interpretability on a Modular Level: At a modular level global 

explanations determine how model parts impact predictions. A Naive Bayes model 

with several hundreds of features is far too large for a human’s working memory. 

Even with memorization, quick predictions for new data points would be impractical. 

The joint distribution of all features is needed over and above this to estimate each 

feature’s importance and how they affect predictions on average, making it 

impossible. But a single weight is easily understood. Thus, understanding some 

models at a modular level is probable. Not all models can be interpreted at a 

parameter level. For linear models, the interpretable parts are weights, for trees 

they are splits (selected features + cut-off points) and leaf node predictions. Linear 

models may seem perfectly interpretable on a modular level, but a single weight’s 

interpretation is inextricably linked with all other weights. This is why such an 

interpretation is prefaced by saying other input features remain the same, which is 

not realistic in most cases. A linear model predicting a house’s value, accounts for 

both its size and number of rooms, and may negative weight the room feature. This 

is as it is highly correlated with the house size feature. Where people prefer larger 

rooms, fewer rooms in a house may be valued over a house with more rooms, if both 

are of the same size. Weights only make sense after contextualizing other model 

features. But linear model weights may still be interpreted better than deep neural 

network weights (Molnar, 2020). 

• Local Interpretability for a Single Prediction: Investigates why the model made a 

certain prediction for a certain instance. This entails homing in on a single instance 

and examining what the model predicts for it and explaining why. For individual 

predictions, an otherwise complex model might behave more accessibly. Locally, 

predictions may only be linearly or monotonically dependent on some features, 

rather than complexly so. Say a house’s value depends nonlinearly on its size. But 

when examining one particular 100 square meter house, it is possible for that 

subset, prediction depends linearly on size. This can be deduced by simulating how 

predicted price changes upon increasing or decreasing size by 10 square meters. 
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Local explanations may therefore be more accurate than global ones. (Molnar, 

2020). 

• Local Interpretability for a Group of Predictions - Answers why a model made 

specific predictions for a group of instances. Multiple instance predictions may be 

explained either with global (modular level) interpretation methods or with 

individual instances. Global methods can be applied by taking the group, treating 

them as the complete dataset, and using global methods with the subset. Individual 

explanation methods can be used on each instance, then listed or aggregated for the 

entire group (Molnar, 2020). 

 

Interpretation method: Various interpretation methods can be broadly distinguished 

based on their results. These can be summarised as follows (Molnar, 2020): 

 

• Feature summary statistics - Several methods give summary statistics for every 

feature, with some providing a single number per feature (like feature importance), 

or more complex output, (e.g., pairwise feature interaction strengths) (Molnar, 

2020). 

• Feature summary visualization - Most feature summary statistics may also be 

visualized. Certain summaries only become meaningful if visualized, and a table 

would be the wrong choice. A feature’s partial dependence is such a case, where 

plots are curves depicting a feature and the average predicted outcome. Partial 

dependences are ideally presented with the drawn curve rather than printed 

coordinates (Molnar, 2020). 

• Model internals (e.g., learned weights) - Intrinsically interpretable models fall into 

this category; for instance, linear models’ weights or learned decision trees’ 

structure (features, and thresholds for splits). There is no clear distinction between 

feature summary statistic and model internals in cases like linear models, as weights 

represent them simultaneously. Another method eliciting model internals is the 

feature detectors visualization in convolutional neural networks. Such methods are, 

by definition model-specific (Molnar, 2020). 

• Data point - This category comprises all methods with data points (already existent 

or newly created) as outputs to facilitate interpretability. One such method is 
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counterfactual explanations. To explain a data instance forecast, the method 

changes some features where the predicted outcome changes accordingly (like a 

class prediction change), to find a similar data point. Another instance is identifying 

predicted class prototypes. For utility, interpretation methods returning new data 

points need data points that themselves are interpretable. This has limited relevance 

for tabular data with hundreds of features but works well for images and texts 

(Molnar, 2020). 

• Intrinsically interpretable model - One black box model interpretation solution is 

(global or local) approximations with interpretable models. The model itself is 

interpreted through internal feature summary statistics or model parameters 

(Molnar, 2020). 

 

3.3.1 Explainable AI Techniques 

 

While a technical review of XAI techniques is beyond the scope of this white paper, 

Nagahisarchoghaei et al. (2023) in their survey paper provide a useful visualisation of existing 

XAI techniques across three broad categories: (i) self-explainability (Figure 6); (ii) global post hoc 

explainability (Figure 7) and (iii) local post hoc explainability (Figure 8).  

 

 

Source: Nagahisarchoghaei et al. (2023)  

Figure 6: Self-Explainabilty Techniques 
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Source: Nagahisarchoghaei et al. (2023)  

Figure 7: Global Post Hoc Explainability Techniques 

 

 

 

Source: Nagahisarchoghaei et al. (2023)  

Figure 8: Local Post Hoc Explainability Techniques 

 

3.4 Approaches to Evaluating Explanations  

 

In advance of EU laws regulating AI and some associated standards, a careful evaluation of XAI 

is essential to outline specific desirable properties. Given that the overarching goal of XAI is to 

establish trust among humans, it is crucial to prioritize properties such as human-friendliness, 

privacy, and non-discrimination (Robnik et al., 2018; Miller, 2019). Ali et al. (2023) document five 

aspects of XAI evaluations. 
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First, explanation evaluation can be built up on cognitive psychology theories to articulate a 

general formal system of how humans can interpret. By examining the cognitive state of human 

users, investigations can improve efficiency of explanations and enhance user understanding of 

AI systems. To determine what kinds of XAI are preferred, measures of understandability of users 

on AI agents and algorithms are imperative (Dodge et al., 2018; Penney et al., 2018; Rader and 

Gray, 2015). It is also essential to consider users' attention and expectation in the process of 

incorporating explainability into AI systems (Stumpf et al., 2018). 

 

Satisfaction is the second aspect of XAI evaluations. A diverse array of metrics, encompassing 

both subjective and objective measures, has been adopted to assess the clarity and adequacy of 

explanations (Miller, 2019). Curran et al. (2012) utilize a method involving ranking and coding of 

user transcripts to evaluate the effectiveness of explanations within a computer vision challenge. 

Lage et al. (2019) illustrate the importance of complexity of XAI model (length, intricacy) in 

affecting satisfaction. Confalonieri et al. (2021) gauge users' perceived understanding of 

explanations through task performance metrics, including accuracy and response time, as well 

as subjective measures like confidence level of user’s responses. 

 

The next aspect of XAI evaluation is trust and transparency. Cahour and Forzy (2009) adopt three 

trust scales in trust assessment of users. Nothdurft et al. (2014) examine the relationship 

between user trust and AI decision explanations, particularly focusing on transparency. Bussone 

et al. (2015) utilize a Likert scale and think-aloud protocols to appraise user trust in a clinical 

decision-support system, revealing that factual explanations contribute to an enhancement in 

user trust. Recently, Stepin et al. (2022) employed Likert scales to measure human perceptions 

of the trustworthiness of automated counterfactual explanations. 

 

Assessment of human-AI interface is one aspect to evaluate XAI. Myers et al. (2006) introduce a 

framework allowing users to pose "why" and "why not" questions for coherent responses Lim et 

al. (2009) assess human performance using AI systems with varied explanations, considering task 

completion time and success rates. Evaluating the human-AI interface helps verify model outputs 

and debug specific AI models (Kulesza et al., 2015). Visual analytics tools like TopicPanaroma, 

FairSight, DGMTracker, aid domain experts in evaluating and reducing biases for fair data-driven 

decision-making. 
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The last aspect that Ali et al. (2023) propose for XAI evaluation is computational assessment. Not 

only human assessment, but system transparency may also be prioritized. In response, Herman 

(2017) advocates for computational approaches to evaluate explanation fidelity, focusing on the 

accuracy of saliency maps as indicators. Various computational methods have emerged to assess 

the validity, consistency, and fidelity of explainability techniques compared to the original black-

box model. Zeiler and Fergus (2014) demonstrate improved prediction outcomes through 

evaluating a CNN visualization tool's fidelity in detecting model flaws. Ross et al. (2017) evaluate 

the consistency and computing cost of explanations using LIME as a baseline, while Schmidt and 

Biessmann (2019) introduce an explanation quality score based on human intuition.  

 

4. Conclusion 

 

In this white paper, we discuss how explainability in AI-systems can deliver transparency and 

build trust towards greater adoption of automation to support financial regulation compliance 

among banks and financial services firms. We uniquely propose the concept of Explainable 

Intelligent Automation as the next generation of Intelligent Automation. Explainable Intelligent 

Automation seeks to leverage emerging innovations in the area of Explainable Artificial 

Intelligence. AI systems underlying Intelligent Automation bring considerable advantages to the 

task of automating compliance processes. A barrier to AI adoption though is the black-box nature 

of the machine learning techniques delivering the outcomes, which is exacerbated by the pursuit 

of increasingly complex frameworks, such as deep learning, in the delivery of performance 

accuracy. Through articulating the business value of Robotic Process Automation and Intelligent 

Automation, we consider the potential for Explainable Intelligent Automation to add value. The 

solution framework sets out the Explainable Intelligent Automation framework, as the interface 

of Robotic Process Automation, Business Process Management and Explainable Artificial 

Intelligence. We also discuss key considerations of an organisation in terms of setting strategic 

priorities around the explainability of AI systems, the technical considerations in Explainable 

Artificial Intelligence analytics, and the imperative to evaluate explanations. 
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