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Abstract: We overview the opportunities that Explainable AI (XAI) offer to enhance financial risk 
management practice, which feeds into the objective of simplifying compliance for banking and 
financial services organisations. We provide a clear problem statement, which makes the case 
for explainability around AI systems from the business and the regulatory perspective. A 
comprehensive literature review positions the study and informs the solution framework 
proposed. The solution framework sets out the key considerations of an organisation in terms of 
setting strategic priorities around the explainability of AI systems, the institution of appropriate 
model governance structures, the technical considerations in XAI analytics, and the imperative 
to evaluate explanations. The use case demonstration brings the XAI discussion to life through 
an application to AI based credit risk management, with focus on credit default prediction. 
  

Strategic Alignment: FinTech Research & Innovation Roadmap 2021-31; Kalifa Review of UK 
FinTech.   
 
FinTech Research and Innovation Roadmap 2021-2031 Sub-Theme: Future of Risk Modelling 
and Risk Management; Simplifying Compliance 
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1. Problem Statement 

 

Recent years have seen a seismic shift in the development and deployment of Artificial 

Intelligence (AI)1 systems within financial services to support a range of functions and activities. 

AI systems, with the support of cloud computing and high-performance computing 

infrastructure, bring value through the ability to process vast amounts of data at unprecedented 

speeds to deliver actionable insights for practitioners. One of the key functions within which AI 

is applied in decision support tools is financial risk management. Various approaches have been 

proposed to support the management of core risk pillars, including credit risk, market risk, 

liquidity risk and operational risk. AI systems allow for improved financial risk management 

procedures informed by a wider pool of structured and unstructured data sources, offering 

greater accuracy in forecasting risk exposures and facilitating higher frequency risk monitoring 

and management practices.  

 

The use of AI systems, however, brings its own unique set of risks to a financial services 

organisation. Notable amongst these risks is the lack of transparency around how AI systems 

operate and, in particular, the lack of explainability around AI system outputs. Indeed, in the 

pursuit of AI system performance accuracy, developments have advanced in the direction of 

deep learning, which brings us further away from explainability. Figure 1 from Yang et al. (2022) 

visualises the inverse relation that exists between AI model performance and explainability. 

Here, one can see that linear models and rules-based models provide the highest levels of 

explainability but the lowest levels of performance, while, in contrast, deep learning models 

provide the highest levels of performance but the lowest levels of explainability. In deploying AI 

systems, there is therefore an inevitable trade-off to be made between performance and 

explainability, which depends considerably on the use case in question and the associated 

materiality for the organisation.   

 

 
1 For convenience, we use the generic term AI generally throughout this white paper in the 
knowledge that AI is a wide concept that incorporates machine learning and deep learning, 
which the latter recognised as a subset of machine learning. 
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Source: Yang et al. (2022) 

Figure 1: The Performance-Explainability Relation 

 

The inability to explain AI system outputs creates a significant barrier to wider AI systems 

adoption within financial services. In particular, the lack of explainability leads to an 

understandable distrust in AI systems, fuels the challenge of articulating and communicating the 

value proposition of AI systems internally within a financial services organisation, creates 

difficulties in adhering to external regulatory and supervisory compliance and oversight, and 

threatens good consumer outcomes in respect of the right to explainability. Against this 

backdrop, the OECD in its assessment of AI opportunities and challenges in finance, explicitly 

calls out explainability as a significant challenge (OECD 2021). The OECD notes the lack of 

explainability in AI systems impedes micro-level prudential supervision, which in turn creates 

macro-level risk for the financial system. So, the challenges pertaining to the generation of AI 

system explanations directly impacts on financial stability.     

 

The need for transparency and explainability is reinforced by emerging regulations in the UK and 

EU. The EU AI Act has advanced considerably with political agreement at the Parliament, Council 

and Commission levels. The finalised text is due to be completed in 2024 and the full application 

of the act will be phased in over a 24-month period thereafter. The EU AI Act sets out a number 

https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
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of priority principles, with transparency being central to these. This transparency principle calls 

explicitly for explainability around AI systems deployment. In particular, decision outcomes need 

to be explainable with associated transparency required around training data and accuracy 

performance. The UK is taking a different approach in that it is not developing a single AI act but 

instead plans to leverage numerous regulatory frameworks. The UK’s approach to AI regulation 

is one of pro-innovation. Five principles are set out under this approach, one of which is 

Appropriate Transparency and Explainability. This principle mirrors that of the EU AI Act in its 

call for explainability around AI systems deployment. In this context, this white paper is 

particularly pertinent. 

 

The discussion thus far reinforces the imperative for AI system explainability to receive the same 

level of attention that AI system performance receives. This is especially true when considering 

financial risk management, given this this function is premised on enabling financial services 

innovation through controlling risk exposure. In this white paper, we tackle the problem of 

explainability in AI systems applied for financial risk management. We propose the use of 

innovative Explainable AI (XAI) techniques that allow financial risk analysts and managers to 

leverage AI, while providing explanations that can be linked back to existing financial theory and 

evidence.  

 

2. Literature Review 

 

To overcome crucial weaknesses of black boxes in traditional machine learning model, 

Explainable Artificial Intelligence (XAI) / Machine Learning has been developed in decision 

support system (Guidotti et al., 2018). It is imperative that all individuals understand “meaningful 

explanations of the logic involved” in decision-making models, following recent General Data 

Protection Regulation (GDPR) law of European Parliament.  

 

A new field of XAI research has recently emerged. Mueller et al. (2019) classifies XAI into three 

generations. First-generation focuses on internal working process using expert knowledge and 

natural language processing. Second-generation emphasizes cognitive assistance, while Third-

generation shifts to black-box systems to explain inner workings like First-generation. The 

development of computers and technology systems currently enables unpacking various 

https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper


 
 
 
 
 

4 
 

explainable choices, thus contributing to transparent decision-making driven by responsible and 

trustworthy processes. 

 

Explainable Artificial Intelligence (XAI) yields numerous advantages. It aims to reveal data 

correlations, describe the process of inferring causality, and establish more harmonious human–

machine links (Haefner et al., 2021). XAI reduces the likelihood of inaccurate informational and 

biased decisions, increasing the credibility and consistency of financial processes (Rudin and 

Radin, 2019). Interpretability's concepts of dependability and trustworthiness can significantly 

improve the user experience and increase their confidence in operational integrity (Adadi and 

Berrada, 2018). 

 

However, XAI does not come with no cost. Line of literature (Miller, 2019; Ali et al., 2023) 

underscores the inherent trade-off between accuracy and explainability. While high-complicated 

machine learning and AI models highly likely provides better accurate results, they would suffer 

from low explainability, and vice versa. It becomes essential to improve the explicability of results 

while simultaneously ensuring a satisfactory level of accuracy. 

 

Given the substantial potentials, costs, and advantages associated with XAI in decision support 

systems, a considerable body of literature has emerged to advance understanding in XAI 

applications within financial services, with a particular focus on financial risk management, 

where the significance of decision-making is pronounced. 

 

2.1. XAI Applications in Financial Services 
 

Recent applications of artificial intelligence (AI) in the financial sectors aim to bolster decision-

making for key stakeholders, such as financial institutions, companies, and investors (Goodell et 

al., 2021; Padmanabhan et al., 2022). Nevertheless, the inherent black-box nature of AI models 

gives rise to concerns regarding their effectiveness, trustworthiness, and untapped potential. 

Therefore, XAI has been deliberated in finance literature as a prospective and viable remedy to 

address these concerns.  
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One application of XAI within the financial services sector involves the augmentation of the asset 

pricing process through a deep investigation of machine learning techniques for return 

prediction (Gu et al., 2020). This entails the utilization of both conventional regularized linear 

methods, such as regressions, and advanced nonlinear methodologies, including boosted 

regression trees (such as Extreme Gradient Boosting) and Random Forest Regressions, among 

others. They show substantial gains by including machine learning for estimating expected 

returns. Gu et al. (2020) see R2 improvements, and big gains for strategies harnessing machine 

learning predictions. Their empirical analysis identifies the most informative predictor variables, 

allowing further investigation into economic mechanisms, and XAI can be used in an analogous 

fashion to this in other contexts. Machine learning also makes it possible to improve expected 

return estimates using predictive information in complex and unstructured data sets (Giglio et 

al., 2022). There are of course, drawbacks to using such models. For instance, the return 

prediction literature using them delves little into understanding economic mechanisms (such as 

risk-return trade-offs, market frictions, or behavioural biases) potentially responsible for 

observed predictability (Giglio et al., 2022). Distinguishing between risk premia and mispricing 

in this context requires a more structured modelling approach, and factor models are the 

dominant tool researchers have used in this pursuit (Giglio et al., 2022). 

 

The evaluation of fund performance stands as a pertinent domain that contemporary literature 

on XAI in the investment services is currently investigating. Kovvuri et al. (2023) employ the 

XGBoost model as a machine learning framework for evaluating the performance of global equity 

fund, while they utilize Shapley values as an XAI method to elaborate on and extend explanations 

regarding predictors. More recently, the use of XAI (specifically variable importance for neural 

networks) has been used to assess the skill of mutual fund managers and ascertain which fund 

characteristics differentiate out-of-sample mutual fund performance, before and after fees, and 

the significance of their interaction effects using neural networks (Kaniel et al., 2023). In a similar 

vein, XAI methods (Shapley values for elastic net, random forests and gradient boosting) have 

been shown to allow one to distinguish between positive and negative alpha mutual funds out-

of-sample net of transaction costs, based on their characteristics and their interactions 

(DeMiguel et al., 2023). One recent work of Babaei et al. (2022) investigates how XAI can elevate 

the practices of portfolio management. Specifically, they adopt XAI technique (Shapley values) 

to elucidate the rationale behind the chosen portfolio weights. 
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Numerous research endeavours have delved into the integration of XAI in financing. While XAI 

methods (global Shapley value and Shapley–Lorenz) has been harnessed to counter racial 

discrimination in an algorithmic loan decision making setting (Agarwal et al., 2023), Lu and 

Calabrese (2023) adopt the Cohort Shapley value to assess the fairness in financing small and 

medium enterprises in the UK. The literature on the application of XAI to highlight discrimination 

or promote fairness while concurrently optimizing performance is vast (e.g., Martin, 2023; Wan 

et al., 2023; Chen et al. , 2022; Blattner et al., 2022; Karimi et al., 2022; Kozodoi et al., 2022; 

Bartlett et al., 2022; Fuster et al., 2022; Castelnovo et al., 2020; Dudik, et al., 2020; Bird, et al., 

2020; Bellamy, et al., 2018).  

 

Other fields of financial services can benefit from the application of XAI, including household 

consumption (Zhou et al., 2023), corporate governance (Scott, 2015), and customer relations 

(Coussement and De Bock, 2013). While the potential applications of XAI in financial services are 

broad, our specific emphasis lies in the domain of financial risk management. 

 

2.2. XAI Applications in Financial Risk Management 
 

Risk management (e.g., default and bankruptcy prediction, fraud detection) is concerned with 

identifying, measuring, and controlling financial risks (Zheng et al., 2019). Financial institutions 

continuously perform it, and regulators require it (Adams and Hagras, 2020). The application of 

XAI to open the black box is financial risk management is becoming more common in literature. 

XAI is being applied to unravel aspects of credit risk management, including default and 

bankruptcy prediction (Sigrist and Hirnschall, 2019; Zheng et al., 2019; Zhang et al., 2023) and 

fraud detection (Jarovsky et al., 2018). Additionally, there is a recent focus on employing XAI to 

unveil insights into Environmental, Social, and Governance (ESG) risk management. 

  

Default and bankruptcy prediction, as discussed by Sigrist and Hirnschall (2019), involves 

assessing the likelihood of corporate failure. The focus of default prediction lies in estimating the 

probability of debtors, such as credit card holders and financial institutions, defaulting based on 

available information, including profiles, loan history, and repayment history, while bankruptcy 

prediction utilizes publicly accessible information to evaluate the potential for a company to go 
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bankrupt (Sigrist and Hirnschall, 2019; Zheng et al., 2019). Sigrist and Hirnschall (2019) extend 

the AI model to assess default prediction by two model-agnostic post-hoc XAI tools (variable 

importance measures and partial dependence plots. In their recent work, by focusing on Chinese 

listed manufacturing companies spanning the years 2012 to 2021, Zhang et al. (2023) develop a 

financial risk early warning model using the D-S Evidence theory-XGBoost (DS-XGBoost) 

framework and conducte an analysis of model interpretability through SHAP (Shapley Additive 

Explanations). The identification of fraudulent transactions is a crucial aspect of fraud detection, 

involving the exposure of unauthorized activities on various accounts (Jarovsky et al., 2018). 

While AI already play a pivotal role in supporting these efforts, XAI serves to enhance decision-

making process by providing transparent and non-discriminatory justifications, thereby making 

AI applications more industry-applicable (Park et al., 2021). 

 

XAI can be used in credit risk management and, in particular, in measuring the risks that arise 

when assessing credit in peer to peer lending platforms with Shapley values (Bussmann et al., 

2020); assess the impact of financial and non-financial factors on a firm's ex-ante cost of capital, 

a measure that reflects the perception of investors on a firm's riskiness with Shapley values and 

Lorenz Zonoids (Bussmann et al., 2023). Lin and Bai (2022) gather data from 40 listed enterprises 

in the mining, steel, and power industries, encompassing 224 financial and non-financial 

indicators, to predict long-term debt. Employing the XGBoost method for feature selection in the 

context of high dimensionality, the study identifies the top six indicators within subsets that 

demonstrate significant efficacy in predicting long-term debt of firms. The selected indicators' 

predictive capabilities were further elucidated through the Shapley additive explanation value. 

In a related investigation, Tron et al. (2023) scrutinize the capacity of corporate governance 

features in non-listed companies to discern instances of corporate defaults using XAI techniques. 

 

Explainable AI (XAI) is also adopted to assess the risk associated with Environmental, Social, and 

Governance (ESG), which currently stands out as a prominent and trending area in sustainable 

finance. The demonstration of the use of XAI in the case of ESG Regulation Compliance is 

specifically motivated by past work demonstrating the utility of such methods in such contexts. 

More specifically, ESG rating transparency has been scrutinized with the aid of explainable 

artificial intelligence algorithms, lending interpretability (with Shapley values) to and shedding 

light on ESG scores derived from proprietary models with satisfactory accuracy levels (Del Vitto 
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et al., 2023). Specifically, their interpretability method allows a fuller understanding of the rating 

system of an issuing agency, and better integration of information provided by the sustainability 

performance indicator in decision making. Further, through local interpretability Shapley values 

application the ratings associated of any company can be explained and motivated. Comparisons 

can also be facilitated across different ratings providers to reconcile disagreements driven by 

differences in feature relevance in their methodological assessment. Further, the challenges 

posed by the rapidly evolving landscape of ESG Regulation are significant. The use of these 

techniques could assuage concerns businesses have in ensuring compliance, and at the same 

time assuring regulators of the fulfilment of the objectives sought to be achieved by legislation. 

These regulations might be especially suited for applying these concepts, particularly in the 

reporting case, as all forms, at least for EU disclosure, are standardized.  

 

Given the potential transparent and interpretability, XAI facilitates comprehensive analysis of 

the decision-making processes in ESG, including reducing biases against social or demographic 

groups in machine learning models (Seele, 2017; Lacoste et al., 2019; Hoepner et al., 2021; Fritz-

Morgenthal et al., 2022; Sætra, 2023). Specifically, Seele (2017) explores the application of 

predictive policing in corporate sustainability management, elucidating its value to shareholders 

and financial analysts. Lacoste et al. (2019) use XAI to develop a tool to quantify the carbon 

emissions for corporate practitioners. Hoepner et al. (2021) underscore the importance of 

addressing explainability challenges in financial data science research. Fritz-Morgenthal et al. 

(2022) also propose responsible, trustworthy, explainable, auditable, and manageable AI to 

investigate governance concerns. Additionally, Sætra (2023) contribute to this line of literature 

by formulating an ESG protocol for companies, aiming to enhance corporate governance and 

stakeholder communication regarding AI capabilities, assets, and activities. 

 

 

3. Solution Framework   

3.1 Corporate Strategy 

In considering XAI integration into AI system deployment within a financial services firm, it is 

necessary to consider the importance of explainability strategically and to connect this explicitly 
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with the firm’s overall digital strategy. Grennan et al. (2022), in a McKinsey 2￼ outline the 

business case for explainable AI. In particular, the following benefits are identified: 

• Increased productivity through better monitoring, maintenance and enhancement of AI 

systems;  

• Building trust and adoption rates among key stakeholders through the transparency that 

explanations provide; 

• Identifying new value creation opportunities from the insights that explanations provide; 

• Articulating the business value of AI systems through explanations that connect 

investment to outcomes more closely. 

• Better risk mitigation and regulatory compliance outcomes afforded by AI system 

explanations. 

 

Placing strategic importance on the explainability of AI systems has the potential to impact 

various key users across an organisation. Figure 2 from Grennan et al. (2022) summarises this 

impact for several professional roles – technologists, business professionals and legal and risk 

professionals. It can be seen that XAI can benefit users through delivering efficiencies, building 

trust, facilitating human-in-the-loop interventions, aligning with business objectives and 

complying with regulations. This latter point is extremely important in the context of, on the one 

hand, using AI towards simplifying compliance, and, on the other hand, complying with 

regulation pertaining to AI systems usage within financial services organisations.  

 

 
2  “Why businesses need explainable AI – and how to deliver it” by Liz Grennan, Andreas Kremer, Alex 
Single, and Peter Zipparo. Report available at 
https://www.mckinsey.com/capabilities/quantumblack/our-insights/why-businesses-need-explainable-
ai-and-how-to-deliver-it. 

https://www.mckinsey.com/our-people/liz-grennan
https://www.mckinsey.com/capabilities/quantumblack/our-insights/why-businesses-need-explainable-ai-and-how-to-deliver-it
https://www.mckinsey.com/capabilities/quantumblack/our-insights/why-businesses-need-explainable-ai-and-how-to-deliver-it
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Source: Grennan et al. (2022) [McKinsey] 

Figure 2: Impact of Explainability on AI System Users  

  

3.2 Model Governance 

 

Once the strategic priority has been approved in respect of explainability of AI systems, a 

financial services firm then needs to ensure appropriate model governance structures are in 

place. AI systems represent a new form of model usage for financial services firms. This novel 

suite of models creates unique model risk exposure for the organisation – given the black box 

nature of AI systems – that must be controlled through existing, but suitably adapted, model risk 

management structures. 

 

Deloitte (2022)3 outline three lines of defence in respect of the governance of XAI models. These 

lines of defence are summarised in Table 1. The first line of defence relates to model developers 

within an organisation, who must ensure that explainability is built into AI model deployment. 

Model developers are required to embed XAI as required to deliver on the explainability 

standards agreed within the organisation, which applies whether the AI system has been 

developed in-house or acquired from an external third-party provider. The second line of defence 

relates to the model validators and model risk managers within an organisation, who have 

responsibility for validating developed AI models from an explainability perspective (among 

 
3 Report available at https://www.deloitte.com/an/en/our-thinking/insights/industry/financial-
services/explainable-ai-in-banking.html. 

https://www.deloitte.com/an/en/our-thinking/insights/industry/financial-services/explainable-ai-in-banking.html
https://www.deloitte.com/an/en/our-thinking/insights/industry/financial-services/explainable-ai-in-banking.html
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other considerations) and assigning usage conditions based on explainability levels (among other 

conditions). The third line of defence relates to the audit and compliance functions within an 

organisation, who have responsibility for ensuring that the explanations delivered by XAI are fit 

for purpose, understood by users and can be justified to external auditors.        

   

Source: Deloitte (2022) 

Table 1: XAI Governance and Lines of Defence 

 

3.3 Approaches to Explanation Generation 

 

With strategy and governance structures in place, the organisation needs to then focus on 

engineering explainability into AI systems through the choice of specific XAI approaches. This 

choice may depend on the nature of the problem space and the materiality attached to this.  We 

provide an overview of the main considerations in respect of XAI techniques.  

 

What is an explanation, and what are its properties? (Molnar, 2020)  

An explanation usually relates feature values of an instance to its model prediction in a 

humanly understandable way. To explain an ML model’s predictions, some explanation method 

is relied on, such as an algorithm that generates explanations. Other explanation types consist 

of a set of data instances (e.g., for the k-nearest neighbour model). For example, a support vector 

machine can be used to predict cancer risk, and explain predictions with the local surrogate 
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method, that generates decision trees as explanations. Alternately, a linear regression model 

may be used that is already equipped with an explanation method (interpreting weights). Certain 

properties have been identified for explanation methods, and explanations. These may be used 

to assess how good they are. It is unclear how these properties may be measured correctly, so 

formalizing how they could be calculated is a vicissitude.  (Molnar, 2020). 

  

Properties of Explanation Methods (Molnar, 2020): 

• Expressive Power - “Language” or structure of explanations the method generates. An 

explanation method may generate natural language, a weighted sum, decision trees, IF-

THEN rules, or something else (Molnar, 2020). 

• Translucency - Describes the extent of reliance on the explanation method to look into 

the ML model, like its parameters. E.g., Intrinsically interpretable models like the linear 

regression model (model-specific) with explanations reliant on them are highly 

translucent. Conversely, methods solely dependent on manipulating inputs and 

observing predictions have zero translucency. Different scenario-dependent 

translucency levels may be desirable. High translucency methods can rely on more 

information to generate explanations. Meanwhile, low translucency explanation 

methods are more portable (Molnar, 2020). 

• Portability - Describes how many ML models with which the explanation method may 

be used. Low translucency methods have higher portability: they treat ML models as 

black boxes. Surrogate models may be the explanation method with highest portability. 

Model specific methods (only work for that model e.g., recurrent neural networks) have 

low portability (Molnar, 2020). 

• Algorithmic Complexity - Describes computational complexity of the explanation 

generating method. Important when computation time bottlenecks generating 

explanations (Molnar, 2020).  

Properties of Individual Explanations (Molnar, 2020): 

• Accuracy: How well is unseen data predicted? High accuracy is particularly valuable if 

the explanation is used for predictions in place of the ML model. Low accuracy may be 
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acceptable if the ML model’s accuracy is also low, and if the goal is to explain what the 

black box model does. In this case, only fidelity is important (Molnar, 2020). 

• Fidelity: How well is the black-box model’s prediction approximated? High fidelity is one 

of the most important explanation properties, as low fidelity explanations have no value 

in explaining ML models. Accuracy and fidelity are closely related. If the black box model 

has high accuracy its explanation also usually has high fidelity and accuracy. Some 

explanations only offer local fidelity, i.e., explanation only approximates well to model 

prediction for a data subset (e.g., local surrogate models) or individual data instance 

(e.g., local Shapley Values) (Molnar, 2020). 

• Consistency: Differences between models trained on the same task and producing 

similar predictions? E.g., assume a support vector machine and a linear regression model 

are trained on the same task and both produce very similar predictions. Using a method 

of choice, if the explanations are very similar, they are highly consistent. This is 

somewhat subtle, as two models may use different features, with similar predictions 

(also called “Rashomon Effect”). A high consistency is undesirable here as the 

explanations must be very different. High consistency is desirable if models really rely on 

similar relationships (Molnar, 2020). 

• Stability: Similarity across similar instances. Stability juxtaposes explanations between 

similar instances for a model, whereas consistency contrasts explanations between 

models. High stability means slight variations in an instance’s features do not 

substantially change the explanation (unless these slight variations also strongly change 

the prediction). Instability may be due to high variance of the explanation method. Put 

differently, strong effects on explanations are seen from slight changes to feature values 

of the instance to be explained. Non-deterministic components of the explanation 

method may also drive instability, like a data sampling step, which the local surrogate 

method uses. High stability is always desirable (Molnar, 2020). 

• Comprehensibility: How well do humans understand? While seemingly like the other 

properties, this one is particularly important. It is difficult to measure and define, but 

very crucial to get right. Comprehensibility is broadly agreed to depend on the audience. 

Measurement ideas include measuring the explanation size (number of features with 

non-zero weights in a linear model, number of decision rules, etc.) or testing how well 

people predict ML model behaviour from explanations. Comprehensibility of features 
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used in explanations also should be considered. Complex feature transformations may 

be less comprehensible than the originals (Molnar, 2020). 

• Certainty: Is the certainty of the ML model reflected? Many ML models only predict 

without stating the confidence of correct predictions. If a 4% cancer probability is 

predicted for a patient, is it as certain as the 4% probability another patient, with 

different feature values, received? Explanation incorporating model certainty is very 

useful (Molnar, 2020). 

• Degree of Importance: How well is importance of features or parts of the explanation 

reflected? If a decision rule explanation for instance is generated for an individual 

prediction, is it clear which rule conditions were the most important (Molnar, 2020)? 

• Novelty: Is it evident if a data instance to be explained is sampled from a “new” region, 

far removed from the training data’s distribution? If not, the model may be inaccurate 

and explanation useless. Novelty is conceptually related to certainty. Higher novelty, 

Implied higher likelihood of low model certainty due to lack of data (Molnar, 2020). 

• Representativeness: How many instances are covered? Explanations may cover an entire 

model (e.g., linear regression model weights interpretation) or represent individual 

predictions (e.g., local Shapley Values) (Molnar, 2020). 

  

What are good or human-friendly explanations? (Molnar, 2020)  

There can be far-reaching consequences for interpretable machine learning based on “good” 

explanations, as defined by humans. Concise and single (or at most double) cause explanations 

which juxtapose the treatment group with a counterfactual group are preferred by humans. 

Good explanations are provided particularly by abnormal causes. Explanations are also “social 

interactions between the explainer and explanation recipient”, where a human being or a 

machine is the explainer. This implies the actual content of the explanation is significantly 

impacted by the social context. Alternately, they may refer to “the social and cognitive process 

of explaining, but also to the product of these processes”. Furthermore, a careful distinction 

needs to be made when comparing explanations that are “human-friendly”, and complete causal 

attribution, where all factors for a particular prediction or behaviour need explaining. The latter 
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may be preferred in legal contexts, where one is mandated to debug an ML model or indicate all 

influencing sources (Molnar, 2020).  

Conversely, where non-experts or time-starved individuals are the explanation’s target audience, 

an alternative definition applies, which defines an explanation as “the answer to a why-

question”, which can be answered with an “everyday”-explanation. Instances of such questions 

may include why a loan was rejected, or why a treatment lacked efficacy for a patient. Such 

“why” questions can usually be reformulated as questions beginning with “how” as well (Molnar, 

2020). 

A deeper dive into what constitutes a “good” explanation yields certain criteria which have 

definite implications for interpretable ML. These can be listed as follows - for more detail on 

these and their implications with examples, interested readers are referred to (Molnar, 2020): 

• Contrastive – Answers why this prediction was made instead of another prediction. 

The implication is a requirement for application-dependent explanations because a point 

of reference for comparison is needed. This may depend on the data point to be 

explained, but also on the user receiving the explanation. The solution for automated 

creation of contrastive explanations might also involve finding proto/archetypes in the 

data (Molnar, 2020). 

• Selected - Select one or two causes from various possible causes as “THE” explanation, 

rather than covering an actual complete list of event causes (Molnar, 2020). 

This implies a preference for brevity in explanation with 1-3 reasons, even if reality is more 

complex (Molnar, 2020). 

• Social - Part of a conversation or interaction between the explainer and explanation 

receiver. 

The implication is that attention to the social environment and intended recipients for 

explanations is needed. Getting this right may depend entirely on the specific application 

(Molnar, 2020). 
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• Focus on the abnormal - People focus more on abnormal causes in any sense (like a rare 

category of a categorical feature) to explain events, that had a small probability but 

nevertheless happened, without which the outcome would have greatly changed 

(counterfactual explanation) (Molnar, 2020). 

If an input feature for a prediction is abnormal, and it influenced the latter, it should be 

included in an explanation, even if other ‘normal’ features have the same influence 

(Molnar, 2020). 

• Truthful - Prove to be true in reality (i.e., in other situations), but selectiveness seems 

more important, which is troubling (Molnar, 2020). 

This implies events should be predicted as truthfully as possible (also called fidelity), with 

less relative importance given to it than contrast, social aspect, and selectivity (Molnar, 

2020). 

• Consistent with explainee’s prior beliefs - Humans tend to devalue or ignore information 

inconsistent or in disagreement with prior beliefs, also called confirmation bias. Thus, 

this bias logically also extends to explanations (Molnar, 2020). 

This implies using specific ways to deal with inconsistent explanations, although difficult 

to integrate into ML, and may come at a heavy cost to predictive performance (Molnar, 

2020). 

• General and probable - A cause that can explain many events is very general and could 

be considered a good explanation. Although this contradicts the claim that abnormal 

causes make good explanations, as a rule of thumb, abnormal causes trump general 

causes, and in the absence of the former, the latter comes to the fore (Molnar, 2020). 

Implies measurement of generality should happen, which is easily achieved by the 

feature’s support: the number of instances to which the explanation applies, divided by 

the total number of instances (Molnar, 2020). 

Methods for machine learning interpretability can be classified according to various criteria 

(Molnar, 2020): 
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Intrinsic or post hoc: Criterion distinguishes based on how interpretability is achieved by 

restricting the model complexity (intrinsic) or analysing the model by applying methods 

after training (post hoc). Intrinsic interpretability describes models deemed interpretable 

owing to their simplicity, e.g., sparse linear models or short decision trees. Post hoc 

interpretability implies interpretability methods applied after model training, e.g., 

permutation feature importance. Post hoc methods may also be applied to intrinsically 

interpretability models, like computing permutation feature importance for decision trees 

(Molnar, 2020). 

Model-specific or model-agnostic: Interpretability tools confined to specific model 

classes are considered model-specific. Linear regression model weights are interpreted 

this way, as their intrinsic interpretation is always model-specific. Similarly, tailored tools 

for interpreting 

machine learning models such as neural networks are also considered model-specific. In 

contrast, model-agnostic interpretability tools may be deployed on any model and are 

used post hoc, after model training. Generally, such agnostic methods function through 

feature input and output pairs’ analysis. These methods cannot access model internals 

like weights or structural information (Molnar, 2020). 

Scope of interpretability: Each algorithmic step in training a predictive model can be 

evaluated in terms of transparency and interpretability (Molnar, 2020): 

• Algorithm Transparency: Assesses how an algorithm creates the model. This relates to 

how an algorithm learns a model from data and the relation types it is capable of 

learning. Using convolutional neural networks to classify images, one may explain the 

learning of edge detectors and filters on the lowest layers by the algorithm. This is 

comprehension of how the algorithm works, but not the specific model that learned in 

the end, and the individual prediction process. Such transparency only requires 

algorithmic knowledge rather than knowing data or the learned model. Algorithms like 

the least squares method are well studied and understood. They characterize high 

transparency. Deep learning approaches (pushing a gradient through a network with 
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millions of weights) are in contrast less well understood. Research is ongoing on their 

inner workings and are thus opaquer (Molnar, 2020). 

• Global, Holistic Model Interpretability: This distinction focuses on how the trained 

model makes predictions. A model may be called interpretable if it can be comprehended 

entirely at once. To explain the global model output, knowing the trained model, 

algorithm and data are prerequisites. This interpretability level considers how the model 

decisions are made, from a holistic features’ view, and each learned component e.g., 

weights, other parameters, and structures. Global interpretability answers the question: 

which features are important, and what kind of interactions between them take place? 

In other words, it helps comprehend the target outcome distribution based on features 

and is exceedingly difficult to achieve pragmatically. Any model beyond a limited number 

of parameters or weights cannot fit into an average human’s short-term memory. One 

cannot imagine a five-feature linear model as it implies drawing the estimated 

hyperplane in a five-dimensional space. Any space over three dimensions cannot be 

conceived by humans. Thus, model comprehension by humans is generally limited to 

parts, such as linear model weights (Molnar, 2020). 

• Global Model Interpretability on a Modular Level: At a modular level global 

explanations determine how model parts impact predictions. A Naive Bayes model with 

several hundreds of features is far too large for a human’s working memory. Even with 

memorization, quick predictions for new data points would be impractical. The joint 

distribution of all features is needed over and above this to estimate each feature’s 

importance and how they affect predictions on average, making it impossible. But a 

single weight is easily understood. Thus, understanding some models at a modular level 

is probable. Not all models can be interpreted at a parameter level. For linear models, 

the interpretable parts are weights, for trees they are splits (selected features + cut-off 

points) and leaf node predictions. Linear models may seem perfectly interpretable on a 

modular level, but a single weight’s interpretation is inextricably linked with all other 

weights. This is why such an interpretation is prefaced by saying other input features 

remain the same, which is not realistic in most cases. A linear model predicting a house’s 

value, accounts for both its size and number of rooms, and may negative weight the 

room feature. This is as it is highly correlated with the house size feature. Where people 

prefer larger rooms, fewer rooms in a house may be valued over a house with more 
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rooms, if both are of the same size. Weights only make sense after contextualizing other 

model features. But linear model weights may still be interpreted better than deep 

neural network weights (Molnar, 2020). 

• Local Interpretability for a Single Prediction: Investigates why the model made a certain 

prediction for a certain instance. This entails homing in on a single instance and 

examining what the model predicts for it and explaining why. For individual predictions, 

an otherwise complex model might behave more accessibly. Locally, predictions may 

only be linearly or monotonically dependent on some features, rather than complexly 

so. Say a house’s value depends nonlinearly on its size. But when examining one 

particular 100 square meter house, it is possible for that subset, prediction depends 

linearly on size. This can be deduced by simulating how predicted price changes upon 

increasing or decreasing size by 10 square meters. Local explanations may therefore be 

more accurate than global ones. (Molnar, 2020). 

• Local Interpretability for a Group of Predictions - Answers why a model made specific 

predictions for a group of instances. Multiple instance predictions may be explained 

either with global (modular level) interpretation methods or with individual instances. 

Global methods can be applied by taking the group, treating them as the complete 

dataset, and using global methods with the subset. Individual explanation methods can 

be used on each instance, then listed or aggregated for the entire group (Molnar, 2020). 

Interpretation method: Various interpretation methods can be broadly distinguished 

based on their results. These can be summarised as follows (Molnar, 2020): 

• Feature summary statistics - Several methods give summary statistics for every feature, 

with some providing a single number per feature (like feature importance), or more 

complex output, (e.g., pairwise feature interaction strengths) (Molnar, 2020). 

• Feature summary visualization - Most feature summary statistics may also be visualized. 

Certain summaries only become meaningful if visualized, and a table would be the 

wrong choice. A feature’s partial dependence is such a case, where plots are curves 

depicting a feature and the average predicted outcome. Partial dependences are ideally 

presented with the drawn curve rather than printed coordinates (Molnar, 2020). 

• Model internals (e.g., learned weights) - Intrinsically interpretable models fall into this 

category; for instance, linear models’ weights or learned decision trees’ structure 
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(features, and thresholds for splits). There is no clear distinction between feature 

summary statistic and model internals in cases like linear models, as weights represent 

them simultaneously. Another method eliciting model internals is the feature detectors 

visualization in convolutional neural networks. Such methods are, by definition model-

specific (Molnar, 2020). 

• Data point - This category comprises all methods with data points (already existent or 

newly created) as outputs to facilitate interpretability. One such method is 

counterfactual explanations. To explain a data instance forecast, the method changes 

some features where the predicted outcome changes accordingly (like a class prediction 

change), to find a similar data point. Another instance is identifying predicted class 

prototypes. For utility, interpretation methods returning new data points need data 

points that themselves are interpretable. This has limited relevance for tabular data with 

hundreds of features but works well for images and texts (Molnar, 2020). 

• Intrinsically interpretable model - One black box model interpretation solution is (global 

or local) approximations with interpretable models. The model itself is interpreted 

through internal feature summary statistics or model parameters (Molnar, 2020). 

 

3.3.1 Explainable AI Techniques 

 

While a technical review of XAI techniques is beyond the scope of this white paper, 

Nagahisarchoghaei et al. (2023) in their survey paper provide a useful visualisation of existing 

XAI techniques across three broad categories: (i) self-explainability (Figure 3); (ii) global post hoc 

explainability (Figure 4) and (iii) local post hoc explainability (Figure 5).  

 

 

Source: Nagahisarchoghaei et al. (2023)  
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Figure 3: Self-Explainability Techniques 

 

Source: Nagahisarchoghaei et al. (2023)  

Figure 4: Global Post Hoc Explainability Techniques 

 

Source: Nagahisarchoghaei et al. (2023)  

Figure 5: Local Post Hoc Explainability Techniques 

 

3.3.2 Implications for Financial Risk Management 

From the discussion above, a number of decisions need to be made in respect of XAI systems 

deployment for financial risk management. While self-explainability is possible with some 

financial risk modelling approaches, many AI models applied for this purpose are likely to require 

some form of post hoc operation to generate the explainability. Furthermore, it is likely that a 

suite of models is being used for risk assessment and so model agnostic approaches may be 

preferable, which can then be applied consistently across the suite of models. Additionally, while 

a financial risk management team will be interested in global explainability, the focus of financial 
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risk management on tail risk means that local explainability is likely to be of greater value. The 

decision on what specific XAI techniques to deploy depends on the specific AI modelling used 

and the form of explainability required. Of course, in practice, several forms of explainability will 

be required to complete a full risk assessment.   

In Section 4 we provide a use case application of alternative XAI techniques applied to the 

problem of credit risk management purposes. These alternative XAI techniques help to 

formulate a more complete picture of what drives credit defaults.     

 

3.4 Approaches to Evaluating Explanations  

 

In advance of EU laws regulating AI and some associated standards, a careful evaluation of XAI 

is essential to outline specific desirable properties. Given that the overarching goal of XAI is to 

establish trust among humans, it is crucial to prioritize properties such as human-friendliness, 

privacy, and non-discrimination (Robnik et al., 2018; Miller, 2019). Ali et al. (2023) document five 

aspects of XAI evaluations. 

 

First, explanation evaluation can be built up on cognitive psychology theories to articulate a 

general formal system of how humans can interpret. By examining the cognitive state of human 

users, investigations can improve efficiency of explanations and enhance user understanding of 

AI systems. To determine what kinds of XAI are preferred, measures of understandability of users 

on AI agents and algorithms are imperative (Dodge et al., 2018; Penney et al., 2018; Rader and 

Gray, 2015). It is also essential to consider users' attention and expectation in the process of 

incorporating explainability into AI systems (Stumpf et al., 2018). 

 

Satisfaction is the second aspect of XAI evaluations. A diverse array of metrics, encompassing 

both subjective and objective measures, has been adopted to assess the clarity and adequacy of 

explanations (Miller, 2019). Curran et al. (2012) utilize a method involving ranking and coding of 

user transcripts to evaluate the effectiveness of explanations within a computer vision challenge. 

Lage et al. (2019) illustrate the importance of complexity of XAI model (length, intricacy) in 

affecting satisfaction. Confalonieri et al. (2021) gauge users' perceived understanding of 

explanations through task performance metrics, including accuracy and response time, as well 

as subjective measures like confidence level of user’s responses. 
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The next aspect of XAI evaluation is trust and transparency. Cahour and Forzy (2009) adopt three 

trust scales in trust assessment of users. Nothdurft et al. (2014) examine the relationship 

between user trust and AI decision explanations, particularly focusing on transparency. Bussone 

et al. (2015) utilize a Likert scale and think-aloud protocols to appraise user trust in a clinical 

decision-support system, revealing that factual explanations contribute to an enhancement in 

user trust. Recently, Stepin et al. (2022) employed Likert scales to measure human perceptions 

of the trustworthiness of automated counterfactual explanations. 

 

Assessment of human-AI interface is one aspect to evaluate XAI. Myers et al. (2006) introduce a 

framework allowing users to pose "why" and "why not" questions for coherent responses Lim et 

al. (2009) assess human performance using AI systems with varied explanations, considering task 

completion time and success rates. Evaluating the human-AI interface helps verify model outputs 

and debug specific AI models (Kulesza et al., 2015). Visual analytics tools like TopicPanaroma, 

FairSight, DGMTracker, aid domain experts in evaluating and reducing biases for fair data-driven 

decision-making. 

 

The last aspect that Ali et al. (2023) propose for XAi evaluation is computational assessment. Not 

only human assessment, but system transparency may also be prioritized. In response, Herman 

(2017) advocates for computational approaches to evaluate explanation fidelity, focusing on the 

accuracy of saliency maps as indicators. Various computational methods have emerged to assess 

the validity, consistency, and fidelity of explainability techniques compared to the original black-

box model. Zeiler and Fergus (2014) demonstrate improved prediction outcomes through 

evaluating a CNN visualization tool's fidelity in detecting model flaws. Ross et al. (2017) evaluates 

the consistency and computing cost of explanations using LIME as a baseline, while Schmidt and 

Biessmann (2019) introduce an explanation quality score based on human intuition.  

 

4. Use Case Demonstration 

    

4.1 XAI Applied to Credit Risk Management 

 

In this section we provide a use case demonstration in the credit risk management space. 
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Schmitt and Cummins (2023) consider the application of post hoc XAI techniques to AI based 

modelling of credit default prediction. Specifically, the study considers two modelling 

approaches currently receiving attention in the credit risk management literature: namely, deep 

learning (DL) and gradient boosting (GB). The study tackles the black box issue surrounding much 

of the recent literature that applies AI modelling to credit default prediction. Using XAI 

techniques, the study is able to provide insights into the key feature inputs that are driving the 

default predictions, moving beyond accuracy as the sole measure of performance. 

 

While the authors perform their analysis on both credit card data and personal loan data, we 

focus on the latter for illustrative purposes in this white paper. Table 2 provides a summary of 

the personal loan data used and the key features recorded for a base of 1000 German banking 

customers. 300 of these customers are recorded as having defaulted on this debt. The DL and 

GB models were applied for credit default prediction using an 80%-20% training-testing split. 

Specifics around the configuration of the DL and GB models can be found in Schmitt and 

Cummins (2023), while the interested reader is directed to the discussion therein around 

performance accuracy. Of note here is that for the German dataset of personal loans, the GB 

model demonstrates the lower performance (AUC 0.868) relative to the best performing DL 

model (AUC 0.930).  

 

Three layers of XAI analysis were conducted. The first is global feature importance in default 

prediction, the second is local feature analysis (via the Shapley value approach) on default 

prediction, and the third is partial dependence plotting to ascertain marginal effects on the 

default prediction.  
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Source: Schmitt and Cummins (2023) 

Table 2: German Personal Loan Data Description 

 

Figure 6 summarises the global feature importance, providing the top ten features identified 

under each of the DL and GB model specifications. Notably there is consistency observed 

between the selection of key features for both models. However, there is significant divergence 

in the ranking of these features in terms of importance for default prediction. Such an 

observation is useful in explaining what drives default predictions across the two models, while 

it emphasises how different AI models can weight different input features quite differently. This 

level of explainability offers insights for an organisation in terms of continual monitoring and 

ongoing model risk management of AI based credit risk systems.  

 

Further to this, Schmitt and Cummins (2023) highlight an issue around global feature importance 

analysis for the DL model. The DL approach introduces randomness through its configuration 
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that means that separate runs of the feature importance analysis lead to completely different 

rankings of the most important features. This means one cannot be confident in the explanations 

returned from such analysis for the DL model. The GB model, due to its configuration, does not 

suffer from this issue and so the feature importance returned is robust. In light of the above, we 

follow Schmitt and Cummins (2023) and return on their localised feature analysis for only the GB 

model.    

 

 

Source: Schmitt and Cummins (2023) 

Figure 6: Global Feature Importance (Top 10 Rank) 

 

Figure 7 presents the results of drilling down to establish the local effects that individual features 

have on the estimated probability of default. The approach used to determine this is the Shapley 

value approach, which leverages a sophisticated game theoretic framework. SHapley Additive 

exPlanation (SHAP) contribution analysis is a model-agnostic explanation approach that, like 

variable importance, identifies and ranks key features of a machine learning approach but also 

provides a summary of the impact that these features have on a localised basis. A local effect 

can thus be determined for each observation in the sample. Some effects are negative meaning 

that they decrease the likelihood of default estimate, while others are positive meaning that they 

increase the likelihood of default estimate. 

 

The most important feature identified is a client’s credit account balance. Our evidence suggests 

that larger (smaller) credit account balances are associated with a negative (positive) impact on 

default prediction. This aligns with the intuition that larger (smaller) credit account balances are 

associated with clients with stronger (weaker) financial positions and repayment capacity. 
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The evidence around age further supports the above evidence pertaining to financial position 

and repayment capacity. The findings largely align with existing evidence. A general inverse 

relationship is observed between age and default risk, which when viewed via partial 

dependence plotting (Figure 8) suggests a decline in default likelihood as a borrower gets older, 

up until the age of 40 or so. Thereafter, the default rate increases somewhat again, although it 

stays below the default risk of younger age groups.  

 

Final observations are made around the credit duration and credit amount. On the former, it is 

found via the SHAP explanations that credit default risk is higher for shorter-duration credit 

contracts. This tallies with the argument that the longer a credit line is in place then the more 

exposed the credit is to default. The SHAP values pertaining to the credit amount are somewhat 

mixed. We can see that high and low credit amounts are associated with increased default 

prediction. From a theoretical standpoint, arguments can be made for both directional 

observations.  

 

Such local effects are very helpful for understanding the performance of the AI model on a 

localised basis, from which the organisation can then monitor and manage individual client 

exposures more closely. 

 

As a final comment, towards evaluating the quality of the explanations generated, Schmitt and 

Cummins (2023) dedicate considerable effort to carefully benchmarking the explanations 

obtained from the XAI analysis with existing financial theory and empirical evidence. 

Interestingly, given that much of the AI literature in recent years has focused on performance 

accuracy only, derived from black box AI implementations, the authors had to revert to much 

earlier literature that utilised transparent self-explaining logistic regression approaches to credit 

default modelling. This again emphasises the importance of moving in the direction of explain 

ability around AI systems for financial risk management.    
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Source: Schmitt and Cummins (2023) 

Figure 7: Local SHAP Contributions 

 

 

 

Source: Schmitt and Cummins (2023) 

Figure 8: Partial Dependence (Selected Features) 

 

5. Conclusion 

 

In this white paper, we overview the opportunities that Explainable AI (XAI) offer to enhance 

financial risk management practice, which feeds into the objective of simplifying compliance for 

banking and financial services organisations. We provide a clear problem statement, which 
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makes the case for explainability around AI systems from the business and the regulatory 

perspective. A comprehensive literature review positions the study and informs the solution 

framework proposed. The solution framework sets out the key considerations of an organisation 

in terms of setting strategic priorities around the explainability of AI systems, the institution of 

appropriate model governance structures, the technical considerations in XAI analytics, and the 

imperative to evaluate explanations. The use case demonstration brings the XAI discussion to life 

through an application to AI based credit risk management, with focus on credit default 

prediction. 
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Appendix A: Definitions 

 

The technical terms and legislation discussed throughout this paper are defined, or elucidated 

upon here first to facilitate an easier understanding of the subject matter that follows. Here, we 

edify the relevant technical terms used, and subsequently elaborate upon the pertinent 

legislative definitions and legislation. 

  

Technical Definitions 

  

Explainable Artificial Intelligence (XAI) - Machine learning/artificial intelligence models often 

perform favourably relative to traditional econometric and linear models. They benefit by 

allowing for potentially complex, non-linear interactions among predictors. This renders them 

powerful but opaque. Thus, such models are often termed “black boxes,” though they are easily 

analysed in many respects. Any exploration of these interaction effect is vexed by vast 

possibilities for identity and functional forms for predictors (Gu et al., 2020). Today, such complex 

black box algorithms are ubiquitously employed and deliver precise predictions and improved 

out-of-sample predictive performance, but frequently without explanations as to their decision 

making (Giglio et al., 2022), (Guidotti, et al., 2018). The use of so called XAI addresses this issue. 

It provides a framework which allows one to pinpoint what variables drive the performance or 

predictions of an algorithm, and what how important they are relative to each other. 

  

Legislative Definitions and Pertinent Legislation  

  

Next, we define the types of legislation as specified by the European Union (EU) or United 

Kingdom (UK) as applicable and available, as seen here, after which we elaborate upon the 

specific legislation pertinent to this study. We do not specify a specific definition when one 

cannot be found as defined by the EU or UK as applicable. The UK has or is in the process of 

developing sustainable finance and ESG legislation broadly equivalent to those of the EU. There 

are both distinctions and similarities in UK and EU legislation, which are elucidated upon or 

highlighted in references across this article. 

  

https://european-union.europa.eu/institutions-law-budget/law/types-legislation_en
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Roadmap - A roadmap is a plan that shows how a product or service is likely to develop over 

time. Roadmaps need to be easy to understand, and simple to adjust when priorities change - as 

often happens with agile ways of working. The definition of a roadmap is as specified on the UK 

Government's website here.  

  

Standard - A standard is a document, established by consensus and approved by a recognised 

body. It provides rules, guidelines or characteristics for activities or their results so that they can 

be repeated. The aim is to achieve the greatest degree of order in a given context. The definition 

of a standard is as specified on the UK Government's website here. 

  

Types of legislation - The aims set out in the EU treaties are achieved by several types of legal 

act. Some are binding, others are not. Some apply to all EU countries, others to just a few. 

  

Regulations - A "regulation" is a binding legislative act. It must be applied in its entirety across 

the EU. For example, when the EU’s regulation on ending roaming charges while travelling within 

the EU expired in 2022, the Parliament and the Council adopted a new regulation both to 

improve the clarity of the previous regulation and make sure a common approach on roaming 

charges is applied for another ten years. 

  

Directives - A "directive" is a legislative act that sets out a goal that EU countries must achieve. 

However, it is up to the individual countries to devise their own laws on how to reach these goals. 

One example is the EU single-use plastics directive, which reduces the impact of certain single-

use plastics on the environment, for example by reducing or even banning the use of single-use 

plastics such as plates, straws and cups for beverages.  

  

FinTech Research & Innovation Roadmap 2022-31 - A document aimed at providing a practical 

pathway to accelerate the development of FinTech excellence, and to embrace opportunities 

across the financial services industry and the broader economy in Scotland and the UK. It aligns 

with the recommendations set out in the Kalifa Review of UK Fintech in February 2021, and 

supports the UK's national ambition to encourage growth by creating the right conditions for 

innovation. It was published with the objective of boosting economic recovery, driving growth, 

and creating jobs over the next ten years. Over the ten-year period, the ambition is to deliver in 

https://www.gov.uk/service-manual/agile-delivery/developing-a-roadmap
https://www.gov.uk/guidance/standardisation
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Scotland an additional 20,000 plus fintech related jobs as well as produce an increase in 

economic gross value add (GVA) through fintech innovation from £0.5bn GVA today to £2.1bn 

GVA by 2031. The industry led roadmap is the first of its kind in the UK and has been pulled 

together by the cluster body FinTech Scotland in collaboration with fintech entrepreneurs, the 

financial services sector, academia, regulators, Government bodies and consumer groups. The 

cross industry led collaboration has resulted in four key strategic innovation themes which 

provide the foundation for the roadmap, these are open finance data, climate finance, financial 

regulation and payments and transactions. The roadmap can be found in full on the FinTech 

Scotland website here, with an overview available here. The associated text above is sourced 

from these two web pages. 

  

The Kalifa Review of UK FinTech - An independent report on the UK Fintech sector by Ron Kalifa 

OBE. At Budget 2020, the Chancellor asked Ron Kalifa OBE to conduct an independent review to 

identify priority areas to support the UK’s fintech sector. The Review formally launched in July 

2020 with objectives for supporting the growth and widespread adoption of UK fintech, and for 

maintaining the UK’s global fintech reputation. The review can be found in full along with an 

executive summary on the UK Government's website here. The associated text above is sourced 

from this web page. 

  

The EU’s Corporate Sustainability Reporting Directive (CSRD), subject to European 

Sustainability Reporting Standards (ESRS) and the Task Force on Climate-related Financial 

Disclosures (TCFD), now supplanted by IFRS S1 and S2 - To better comprehend financial risks 

and opportunities, there is increasing scrutiny on sustainability and climate disclosures of 

enterprises by corporations, governments, and investors. Worldwide regulators and benchmark 

setters have introduced sustainability and climate reporting frameworks and rules to enhance 

the quality and quantity of the relevant information (Manifest-Climate, 2023). 

  

The EU’s CSRD and the TCFD are the world’s leading climate reporting frameworks, both target 

improvements in entity disclosures of climate- and sustainability-related opportunities and risks. 

A further design intention is standardizing and harmonizing climate and sustainability reporting 

across companies and jurisdictions (Manifest-Climate, 2023). 

  

https://www.fintechscotland.com/wp-content/uploads/2022/03/Scotland-FinTech-Roadmap-March-2022-lowres.pdf
https://www.fintechscotland.com/fintech-innovation-roadmap-aims-to-drive-a-threefold-increase-in-economic-growth-and-job-creation/
https://www.gov.uk/government/publications/the-kalifa-review-of-uk-fintech
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Both entail company level disclosures and apply to large corporations and all listed organisations. 

The necessary disclosures under both are of sustainability related opportunities and risks. TCFD's 

scope is a subset of CSRD, as CSRD covers all sustainability topics (ESG), while TCFD is designed 

for ESG related to climate topics only (Manifest-Climate, 2023). 

  

January 5, 2023, marked the date the EU's CSRD requirements came into effect. Roughly 50,000 

companies — as defined above — compulsorily needed to disclose their sustainability risks and 

opportunities related to environmental and social issues under them (Manifest-Climate, 2023). 

  

The directive mandates company reports based on the European Sustainability Reporting 

Standards, developed by EFRAG (previously the European Financial Reporting Advisory Group). 

Firms that fulfil the eligibility criteria must commence reporting by fiscal year 2024 (Manifest-

Climate, 2023). 

  

There are many similarities between the CSRD and TCFD. A core one is that they both call for the 

robust companies’ climate-related financial risks and opportunities reporting. The former's text 

on climate disclosures is in broad agreement with the four TCFD pillars — governance, strategy, 

risk management, and metrics and targets. Further, both aim to promote capital market 

transparency and accountability, along with standardizing climate- and sustainability-related 

disclosures (Manifest-Climate, 2023). 

  

Several other similarities exist in relation to governance, strategy, risk management, metrics and 

targets. Crucially, key distinctions also exist along the lines of scope (as discussed above), double 

materiality, compatibility with the 1.5°C transition, impact mitigation actions, strategic 

implementation, and effective disclosure preparedness for companies. For brevity, these are not 

expanded upon here, but interested readers are directed to (Manifest-Climate, 2023). Their 

publications that provide a comprehensive overview of the TCFD; guidance on metrics, targets, 

and transition plans; the TCFD's recommendations; and how to implement these 

recommendations can be found here on their website. 

  

It is important to note (as stated on their website) that ``Concurrent with the release of its 2023 

status report on October 12, 2023, the TCFD has fulfilled its remit and disbanded. The FSB has 

https://www.fsb-tcfd.org/publications/
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asked the IFRS Foundation to take over the monitoring of the progress of companies’ climate-

related disclosures. As of November 2023, this website will no longer be updated or monitored 

but will remain available to serve as a resource for materials developed by the Task Force. The 

Task Force is deeply grateful to all parties involved for their input, support, and adoption of the 

TCFD recommendations.''  

  

The IFRS has subsequently issued two inaugural global sustainability disclosure standards IFRS 

S1 General Requirements for Disclosure of Sustainability-related Financial Information, and IFRS 

S2 Climate-related Disclosures. Both fully incorporate the recommendations and are built on the 

framework of the TCFD. They consolidate the TCFD recommendations and framework with other 

standards and frameworks, including the SASB Standards, CDSB Framework, Integrated 

Reporting Framework and World Economic Forum metrics, to streamline sustainability 

disclosures. Details on these standards can be found on the IFRS website here, here, and here. 

Overviews on them can also be found on the Cambridge Institute for Sustainability Leadership 

website here, and The Institute of Chartered Accountants in England and Wales website here for 

interested readers. 

  

The EU’s CSRD ESRS regulation's applicability begins with 2024 data and 2025 reporting 

(O'Connell, 2023). ESRS were initially adopted in July, 2023 and EFRAG released a draft data 

points list of the ESRS on the 25th of October, 2023.A high level info graphic of the ESRS and the 

data points from (O'Connell, 2023) can be seen in the Figure below from (O'Connell, 2023). For 

brevity, details are not expanded upon here, but interested readers are directed to (O'Connell, 

2023). 

  

The EU’s Sustainable Finance Disclosure Regulation (SFDR) and the UK's Sustainability 

Disclosure Regulation (SDR) - Both these regulations, generally speaking can be categorised as 

product-level sustainability disclosures for financial market participants. These regulations are 

both designed with the aim of greater disclosure and transparency on sustainable finance 

investments and products, furnish further investment information to investors for informed 

decision making, and fight green washing through integrity and trust building in sustainable 

instruments (Vincent, 2023). More specifically, we shed light on each regulation below. 

  

https://www.ifrs.org/news-and-events/news/2023/06/issb-issues-ifrs-s1-ifrs-s2/
https://www.ifrs.org/projects/completed-projects/2023/general-sustainability-related-disclosures/
https://www.ifrs.org/news-and-events/news/2023/06/ten-things-to-know-about-the-first-issb-standards/
https://www.cisl.cam.ac.uk/news/blog/what-are-issbs-ifrs-s1-and-ifrs-s2-standards-and-why-do-they-matter
https://www.icaew.com/technical/corporate-reporting/non-financial-reporting/international-sustainability-disclosure-standards/ifrs-s1-and-ifrs-s2-in-the-uk
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The European Commission-led EU SFDR, set out disclosure requirements on sustainability for 

financial market participants, for example investment firms, insurance, and reinsurance 

companies. It is applicable for EU domiciled firms, and for products marketed in the EU, 

regardless of business location (Vincent, 2023). 

  

In contrast, improved sustainability information from issuers and investment managers that is 

more comparable, consistent, and comprehensive is the goal of the UK SDR. It is spearheaded 

by the UK Financial Conduct Authority (FCA). Its ambit extends to share and bond issuers that 

are regulated market listed or investment managers in the UK (Vincent, 2023). 

  

Thus, the EU SFDR scope is restricted to EU-based companies and entities marketing products in 

the EU, whereas the UK SDR coverage extends to purely UK-based companies. A considerable 

number of firms may be required to comply with both regulations (Vincent, 2023). Similar to the 

case of the CSRD and TCFD, commonalities and differences exist for SFDR and SDR. For brevity, 

these are not expanded upon here, but interested readers are directed to (Vincent, 2023), 

(Simmons and Simmons, 2021). The full text of the SDR Policy Statement published in November, 

2023 can be found here on the FCA's website. 

  

UK’s Climate-Related Financial Disclosure (Department for Energy Security and Net-Zero) - 

Climate-related financial disclosures for companies and limited liability partnerships (LLPs). In-

scope companies and limited liability partnerships (LLPs) need to meet these new mandatory 

climate-related financial disclosure requirements under the Companies (Strategic Report) 

(Climate-related Financial Disclosure) Regulations 2022 and the Limited Liability Partnerships 

(Climate-related Financial Disclosure) Regulations 2022. The regulations were made on 17 

January 2022 and apply to reporting for financial years starting on or after 6 April 2022. The 

guidance to help meet these disclosure requirements can be found in full here on the UK 

Government's website. The associated text above is sourced from this web page. 

  

UK Sustainability Disclosure Standards (SDS) - Corporate disclosures on sustainability-related 

opportunities and risks that companies face are set out by the UK SDS. Subsequent UK regulation 

or legislation reporting requirements on opportunities and risks related to sustainability matters, 

including those stemming from climate change. They are anticipated to become effective on 

https://www.fca.org.uk/publication/policy/ps23-16.pdf?_hsmi=285025018
https://www.gov.uk/government/publications/climate-related-financial-disclosures-for-companies-and-limited-liability-partnerships-llps
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January 1, 2025, and published in July 2024 at the latest by the UK Department for Business and 

Trade (DBT). They will be based on the IFRS® Sustainability Disclosure Standards issued by the 

International Sustainability Standards Board (ISSB). They will be adopted into UK entities' legal 

and regulatory reporting requirements after their creation and publication (Brightest, 2023). 

Interested readers are directed to (Brightest, 2023) for more detail. 
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